Entropy-based Latent Structured Output Prediction - Supplementary materials

Diane Bouchacourt CentraleSupélec and INRIA Saclay Sebastian Nowozin Microsoft Research Sebastian.Nowozin@microsoft.com

diane.bouchacourt@ecp.fr

M. Pawan Kumar CentraleSupélec and INRIA Saclay

pawan.kumar@ecp.fr

1. Proofs

In this section we derive the proofs of all propositions in the main paper.

Proposition 1. The AD entropy of the generalized distribution of y can be written as the sum of the negative log-likelihood of y and the AD entropy of the conditional distribution of the hidden variable given the output,

$$H_{\alpha,\beta}(Q_{\boldsymbol{x}}^{\boldsymbol{y}};\boldsymbol{w}) = -\log P(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{w}) + H_{\alpha,\beta}(P_{\boldsymbol{x}}^{\boldsymbol{y}};\boldsymbol{w}).$$
(1)

Proof. The AD entropy of the generalized distribution is

$$\begin{aligned} H_{\alpha,\beta}(Q_{\boldsymbol{x}}^{\boldsymbol{y}};\boldsymbol{w}) &= \frac{1}{1-\alpha} \log \left(\frac{\sum_{h} P(\boldsymbol{y},\boldsymbol{h}|\boldsymbol{x};\boldsymbol{w})^{\alpha+\beta-1}}{\sum_{h} P(\boldsymbol{y},\boldsymbol{h}|\boldsymbol{x};\boldsymbol{w})^{\beta}} \right) \\ &= \frac{1}{1-\alpha} \log \left(\frac{\sum_{h} P(\boldsymbol{h}|\boldsymbol{y},\boldsymbol{x};\boldsymbol{w})^{\alpha+\beta-1} P(\boldsymbol{y}|\boldsymbol{x};\boldsymbol{w})^{\alpha+\beta-1}}{\sum_{h} P(\boldsymbol{h}|\boldsymbol{y},\boldsymbol{x};\boldsymbol{w})^{\beta} P(\boldsymbol{y}|\boldsymbol{x};\boldsymbol{w})^{\beta}} \right) \\ &= -\frac{\alpha-1}{1-\alpha} \log P(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{w}) + \frac{1}{1-\alpha} \log \left(\frac{\sum_{h} P(\boldsymbol{h}|\boldsymbol{y},\boldsymbol{x};\boldsymbol{w})^{\alpha+\beta-1}}{\sum_{h} P(\boldsymbol{h}|\boldsymbol{y},\boldsymbol{x};\boldsymbol{w})^{\beta}} \right) \\ &= -\log P(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{w}) + H_{\alpha,\beta}(P_{\boldsymbol{x}}^{\boldsymbol{y}};\boldsymbol{w}) \end{aligned}$$

The parameters of the model are learned by minimizing the objective function (2). We introduce regularization over the parameters of the model w to avoid overfitting the parameters to the training data.

$$\min_{\boldsymbol{w}} \frac{1}{2} ||\boldsymbol{w}||^2 + \frac{C}{n} \sum_{i} \left[\epsilon_y \log \sum_{\boldsymbol{y}} \exp \frac{1}{\epsilon_y} \left(\Delta(\boldsymbol{y}_i, \boldsymbol{y}) - \epsilon_h H_{\alpha, \beta}(Q_{\boldsymbol{x}_i}^{\boldsymbol{y}}; \boldsymbol{w}) \right) + \epsilon_h H_{\alpha, \beta}(Q_{\boldsymbol{x}_i}^{\boldsymbol{y}_i}; \boldsymbol{w}) \right].$$
(2)

Proposition 2. Objective (2) minimizes an upper bound on the loss $\Delta(\mathbf{y}_i, \mathbf{y}_i(\mathbf{w}))$ where \mathbf{y}_i is the ground truth output of training example *i* and $\mathbf{y}_i(\mathbf{w})$ is the predicted output. This upper-bound is tightest when $\epsilon_y \rightarrow 0^+$.

Proof. We have $\boldsymbol{y}_i(\boldsymbol{w}) = \operatorname*{argmin}_y H_{lpha,eta}(Q^{\boldsymbol{y}_i}_{\boldsymbol{x}_i}; \boldsymbol{w})$ thus

$$\Delta(\boldsymbol{y}_{i}, \boldsymbol{y}_{i}(\boldsymbol{w})) \leq \Delta(\boldsymbol{y}_{i}, \boldsymbol{y}_{i}(\boldsymbol{w})) - \epsilon_{h} H_{\alpha, \beta}(Q_{\boldsymbol{x}_{i}}^{\boldsymbol{y}_{i}(\boldsymbol{w})}; \boldsymbol{w}) + \epsilon_{h} H_{\alpha, \beta}(Q_{\boldsymbol{x}_{i}}^{\boldsymbol{y}_{i}}; \boldsymbol{w})$$

$$\leq \epsilon_{y} \log \sum_{y} \exp \frac{1}{\epsilon_{y}} \left(\Delta(\boldsymbol{y}_{i}, \boldsymbol{y}) - \epsilon_{h} H_{\alpha, \beta}(Q_{\boldsymbol{x}_{i}}^{\boldsymbol{y}_{i}}; \boldsymbol{w}) \right) + \epsilon_{h} H_{\alpha, \beta}(Q_{\boldsymbol{x}_{i}}^{\boldsymbol{y}_{i}}; \boldsymbol{w})$$
(3)

The first inequality holds by definition of $y_i(w)$ and the second inequality holds because:

$$\Delta(\boldsymbol{y}_i, \boldsymbol{y}_i(\boldsymbol{w})) - \epsilon_h H_{\alpha,\beta}(Q_{\boldsymbol{x}_i}^{\boldsymbol{y}_i(\boldsymbol{w})}; \boldsymbol{w}) \le \max_{\boldsymbol{y}}(\Delta(\boldsymbol{y}_i, \boldsymbol{y}) - \epsilon_h H_{\alpha,\beta}(Q_{\boldsymbol{x}_i}^{\boldsymbol{y}_i}; \boldsymbol{w}))$$
(4)

For any set $P = (p_1, ..., p_n) \in \mathbb{R}^{+^n}$ with $p_{max} = \max_{p \in P}$:

$$\log \sum_{i} \exp(p_{i}) = p_{max} + \log \sum_{p_{i}} \exp(p_{i} - p_{max})$$
$$= p_{max} + \log(1 + \sum_{p_{i}p} \exp(p_{i} - p_{max}))$$
$$\geq p_{max} + \log(1)$$
$$= p_{max}$$
(5)

since log is an increasing function and exp is always positive. Then:

$$\Delta(\boldsymbol{y}_{i}, \boldsymbol{y}_{i}(\boldsymbol{w})) - \epsilon_{h} H_{\alpha,\beta}(Q_{\boldsymbol{x}_{i}}^{\boldsymbol{y}_{i}}; \boldsymbol{w}) \leq \max_{\boldsymbol{y}} (\Delta(\boldsymbol{y}_{i}, \boldsymbol{y}) - \epsilon_{h} H_{\alpha,\beta}(Q_{\boldsymbol{x}_{i}}^{\boldsymbol{y}_{i}}; \boldsymbol{w}))$$

$$\leq \epsilon_{\boldsymbol{y}} \log \sum_{\boldsymbol{y}} \exp \frac{1}{\epsilon_{\boldsymbol{y}}} \left(\Delta(\boldsymbol{y}_{i}, \boldsymbol{y}) - \epsilon_{h} H_{\alpha,\beta}(Q_{\boldsymbol{x}_{i}}^{\boldsymbol{y}_{i}}; \boldsymbol{w}) \right)$$
(6)

Proposition 3. *The optimization problem* (2) *can be equivalently written as a difference of convex (DC) functions for any values of* $\alpha \ge 0, \beta \ge 0$ *using the following formulation,*

$$\min_{\boldsymbol{w}} \quad \frac{1}{2} ||\boldsymbol{w}||^2 + \frac{C}{n} \epsilon_y \sum_i \Big[\log \sum_{\boldsymbol{y}} \exp \frac{1}{\epsilon_y} \Big(\Delta(\boldsymbol{y}_i, \boldsymbol{y}) + F^+_{\alpha, \beta}(\boldsymbol{y}, \boldsymbol{w}) - F^-_{\alpha, \beta}(\boldsymbol{y}, \boldsymbol{w}) \Big) + G^+_{\alpha, \beta}(\boldsymbol{y}_i, \boldsymbol{w}) - G^-_{\alpha, \beta}(\boldsymbol{y}_i, \boldsymbol{w}) \Big],$$
(7)

where $F_{\alpha,\beta}^+(\boldsymbol{y},\boldsymbol{w})$, $F_{\alpha,\beta}^-(\boldsymbol{y},\boldsymbol{w})$, $G_{\alpha,\beta}^+(\boldsymbol{y}_i,\boldsymbol{w})$, and $G_{\alpha,\beta}^-(\boldsymbol{y}_i,\boldsymbol{w})$ are convex. *Proof.* We can write (2) as:

$$\min_{\boldsymbol{w}} \frac{1}{2} ||\boldsymbol{w}||^{2} + \frac{C}{n} \epsilon_{\boldsymbol{y}} \sum_{i} \left[\log \sum_{\boldsymbol{y}} \exp \frac{1}{\epsilon_{\boldsymbol{y}}} \left(\Delta(\boldsymbol{y}_{i}, \boldsymbol{y}) - \epsilon_{h} \frac{1}{1 - \alpha} \left(\log \sum_{h} P(\boldsymbol{y}, \boldsymbol{h} | \boldsymbol{x}_{i}; \boldsymbol{w})^{\alpha + \beta - 1} - \log \sum_{h} P(\boldsymbol{y}, \boldsymbol{h} | \boldsymbol{x}_{i}; \boldsymbol{w})^{\beta} \right) \right) \\
+ \epsilon_{h} \frac{1}{1 - \alpha} \left(\log \sum_{h} P(\boldsymbol{y}_{i}, \boldsymbol{h} | \boldsymbol{x}_{i}, \boldsymbol{w})^{\alpha + \beta - 1} - \log \sum_{h} P(\boldsymbol{y}_{i}, \boldsymbol{h} | \boldsymbol{x}_{i}, \boldsymbol{w})^{\beta} \right) \right] \\
= \min_{\boldsymbol{w}} \frac{1}{2} ||\boldsymbol{w}||^{2} + \frac{C}{n} \epsilon_{\boldsymbol{y}} \sum_{i} \left[\log \sum_{\boldsymbol{y}} \exp \frac{1}{\epsilon_{\boldsymbol{y}}} \left(\Delta(\boldsymbol{y}_{i}, \boldsymbol{y}) - \epsilon_{h} \frac{1}{1 - \alpha} \log \sum_{h} P(\boldsymbol{y}, \boldsymbol{h} | \boldsymbol{x}_{i}; \boldsymbol{w})^{\alpha + \beta - 1} + \epsilon_{h} \frac{1}{1 - \alpha} \log \sum_{h} P(\boldsymbol{y}, \boldsymbol{h} | \boldsymbol{x}_{i}; \boldsymbol{w})^{\beta} \right) \right) \\
+ \epsilon_{h} \frac{1}{1 - \alpha} \log \sum_{h} P(\boldsymbol{y}_{i}, \boldsymbol{h} | \boldsymbol{x}_{i}, \boldsymbol{w})^{\alpha + \beta - 1} - \epsilon_{h} \frac{1}{1 - \alpha} \log \sum_{h} P(\boldsymbol{y}_{i}, \boldsymbol{h} | \boldsymbol{x}_{i}, \boldsymbol{w})^{\beta} \right] \tag{8}$$

The log-sum-exp function summing over the output variable y is convex with respect to w. Let's assume $\alpha > 1$, then $\frac{1}{1-\alpha} < 0$, and $-\frac{1}{1-\alpha} > 0$. In this case:

- $F_{\alpha,\beta}^+(\boldsymbol{y},\boldsymbol{w}) = -\epsilon_h \frac{1}{1-\alpha} \log \sum_h P(\boldsymbol{y},\boldsymbol{h}|\boldsymbol{x}_i;\boldsymbol{w})^{\alpha+\beta-1}$ is convex with respect to \boldsymbol{w} .
- $F_{\alpha,\beta}^{-}(\boldsymbol{y},\boldsymbol{w}) = -\epsilon_h \frac{1}{1-\alpha} \log \sum_h P(\boldsymbol{y},\boldsymbol{h}|\boldsymbol{x}_i;\boldsymbol{w})^{\beta}$ is convex with respect to \boldsymbol{w} .
- $G^+_{\alpha,\beta}(\boldsymbol{y}_i, \boldsymbol{w}) = -\epsilon_h \frac{1}{1-\alpha} \log \sum_h P(\boldsymbol{y}_i, \boldsymbol{h} | \boldsymbol{x}_i, \boldsymbol{w})^{\beta}$ is convex with respect to \boldsymbol{w} .
- $G_{\alpha,\beta}^{-}(\boldsymbol{y}_{i},\boldsymbol{w}) = -\epsilon_{h} \frac{1}{1-\alpha} \log \sum_{h} P(\boldsymbol{y}_{i},\boldsymbol{h}|\boldsymbol{x}_{i},\boldsymbol{w})^{\alpha+\beta-1}$ is convex with respect to \boldsymbol{w} .

With the opposite results in the case $\alpha < 1.$

The log-sum-exp function summing over the output variable y is convex and non-decreasing with respect to w, thus taking the log-sum-exp of a difference of convex is still a difference of convex [3, Corollary 4.3].

2. Algorithmic details

In this section we detail the algorithmic procedure for training our Unified Framework (UF).

Algorithm 1: Algorithm for trainin UF Data: $D = \{(\boldsymbol{x}_i, \boldsymbol{y}_i), i = 1...N\}$ Result: Model parameter \boldsymbol{w} initialize $\boldsymbol{w} = \boldsymbol{w}_0, t = 0;$ $obj(\boldsymbol{w}, \boldsymbol{w}_t) = \frac{1}{2} ||\boldsymbol{w}||^2 + \frac{C}{n} \epsilon_y \sum_i \left[\log \sum_{\boldsymbol{y}} \exp \frac{1}{\epsilon_y} \left(\Delta(\boldsymbol{y}_i, \boldsymbol{y}) + F^+_{\alpha, \beta}(\boldsymbol{y}, \boldsymbol{w}) - T^{F^-_{\alpha, \beta}}_{\boldsymbol{y}, \boldsymbol{w}_t}(\boldsymbol{w}) \right) + G^+_{\alpha, \beta}(\boldsymbol{y}_i, \boldsymbol{w}) - T^{G^-_{\alpha, \beta}}_{\boldsymbol{y}_i, \boldsymbol{w}_t}(\boldsymbol{w}) \right]$ (9) while $t \leq T$ and $\delta_{obj} \geq C\lambda$ do $| \boldsymbol{w}_{t+1} \leftarrow \operatorname{argmin} obj(\boldsymbol{w}, \boldsymbol{w}_t)$ by gradient descent. $\delta_{obj} \leftarrow obj(\boldsymbol{w}_t, \boldsymbol{w}_{t-1}) - obj(\boldsymbol{w}_{t+1}, \boldsymbol{w}_t)$ $t \leftarrow t+1$ 4 end 5 return \boldsymbol{w}

During step 1 of Algorithm 1, we solve the convex optimization problem (10):

$$\boldsymbol{w}_{t+1} = \underset{\boldsymbol{w}}{\operatorname{argmin}} \quad \frac{1}{2} ||\boldsymbol{w}||^2 + \frac{C}{n} \epsilon_y \sum_i \left[\log \sum_y \exp \frac{1}{\epsilon_y} \left(\Delta(\boldsymbol{y}_i, \boldsymbol{y}) + F^+_{\alpha, \beta}(\boldsymbol{y}, \boldsymbol{w}) - T^{F^-_{\alpha, \beta}}_{\boldsymbol{y}, \boldsymbol{w}_t}(\boldsymbol{w}) \right) + G^+_{\alpha, \beta}(\boldsymbol{y}, \boldsymbol{w}) - T^{G^-_{\alpha, \beta}}_{\boldsymbol{y}, \boldsymbol{w}_t}(\boldsymbol{w}) \right]. \quad (10)$$

 $F^{-}_{\alpha,\beta}(\boldsymbol{y},\boldsymbol{w})$ and $G^{-}_{\alpha,\beta}(\boldsymbol{y}_i,\boldsymbol{w})$ are replaced by their first order Taylor expansion:

$$T_{\boldsymbol{y},\boldsymbol{w}_{t}}^{F_{\alpha,\beta}^{-}}(\boldsymbol{w}) = F_{\alpha,\beta}(\boldsymbol{y},\boldsymbol{w}_{t})^{-} + (\boldsymbol{w} - \boldsymbol{w}_{t})^{T} \nabla_{\boldsymbol{w}} F_{\alpha,\beta}^{-}(\boldsymbol{y},\boldsymbol{w})|_{\boldsymbol{w}_{t}},$$

$$T_{\boldsymbol{y}_{i},\boldsymbol{w}_{t}}^{G_{\alpha,\beta}^{-}}(\boldsymbol{w}) = G_{\alpha,\beta}(\boldsymbol{y}_{i},\boldsymbol{w}_{t})^{-} + (\boldsymbol{w} - \boldsymbol{w}_{t})^{T} \nabla_{\boldsymbol{w}} G_{\alpha,\beta}^{-}(\boldsymbol{y}_{i},\boldsymbol{w})|_{\boldsymbol{w}_{t}}.$$
 (11)

We denote by $\nabla_{\boldsymbol{w}} F_{\alpha,\beta}^{-}(\boldsymbol{y}, \boldsymbol{w})|_{\boldsymbol{w}_{t}}$ the gradient of $F_{\alpha,\beta}^{-}(\boldsymbol{y}, \boldsymbol{w})$ with respect to \boldsymbol{w} estimated at \boldsymbol{w}_{t} and similarly $\nabla_{\boldsymbol{w}} G_{\alpha,\beta}^{-}(\boldsymbol{y}_{i}, \boldsymbol{w})|_{\boldsymbol{w}_{t}}$. We solve the optimization problem (10) by performing gradient descent as explained in Algorithm 2. Algorithm 2: Gradient descent with line search for solving (10)

```
Data: D = \{(x_i, y_i), i = 1...N\}, current w_t
      Result: w_{t+1} = \operatorname{argmin} \operatorname{obj}(w, w_t)
 1 stop = 0, l = 0
  2 w_{t+1} = w_t
 \mathbf{3} \operatorname{obj}_{0} = \operatorname{obj}(\boldsymbol{w}_{t}, \boldsymbol{w}_{t})
  4 while l < L and stop = 0 do
  5
              LINE SEARCH procedure: returns w_{t+1}
  6
  7
               stop_{1} = 0, a = 0
  8
              b = 0.5, c = 0.1
  9
               \eta = \eta_0
               while a \leq A and stop_1 = 0 do
 10
                       \boldsymbol{w}_{\text{tent}} \leftarrow \boldsymbol{w}_t - \eta \nabla_{\boldsymbol{w}} \operatorname{obj}(\boldsymbol{w}, \boldsymbol{w}_t)|_{\boldsymbol{w}_t}
 11
                      \tilde{if} obj(\boldsymbol{w}_{tent}, \boldsymbol{w}_t) \leq obj_0 + c\eta \nabla_{\boldsymbol{w}} obj(\boldsymbol{w}, \boldsymbol{w}_t)|_{\boldsymbol{w}_t} \nabla_{\boldsymbol{w}} obj(\boldsymbol{w}, \boldsymbol{w}_t)|_{\boldsymbol{w}_t} \text{ then }
12
                               oldsymbol{w}_{t+1} \leftarrow oldsymbol{w}_{	ext{tent}}
13
                               stop_{l} \leftarrow 1
14
                       else
 15
 16
                               else
                                 \eta \leftarrow b\eta
 17
                               end
18
19
                       end
                       a \leftarrow A + 1
20
21
               end
22
23
              \delta_{obj} = \mathrm{obj}_0 - \mathrm{obj}(\boldsymbol{w}_{\mathsf{t+1}}, \boldsymbol{w}_t)
24
              if 0 \leq \delta_{obj} < C\lambda then
25
                stop \leftarrow 1
26
              end
27
              l \leftarrow l + 1
28 end
29 return oldsymbol{w}_{t+1}
```

3. Experiments details

3.1. Binary action classification

During our experiments, for each binary action classification tasks, we reweighed the positive samples by the scalar $\frac{|N|}{|P|}$ where N and P are the numbers of negatives and positives samples respectively. This is the weighted loss that we consider in our results analysis.

Table 1 shows the per class test loss mean on the 5 folds for the 10 actions of the "trainval" dataset of the PASCAL VOC 2011 [1] action classification dataset. As explained in our main paper, we see that that the performances of UF as a replication and the corresponding existing model are similar. All models perform equivalently except that the output by marginalizing the output and hidden variable as done by MSSVM is the less accurate criterion. We do not report p-values of left-tailed t-tests on the models' test loss values over the 5 folds since there no statistical significance of outperformance between pairs of models.

Tables 2 and 3 show that in most cases the set of UF parameters chosen by cross-validation boils down to a prediction criterion that maximizes over the output and hidden variables. Similarly, the best α chosen for the M3E models is of high value in that case M3E recovers LSSVM, and the ϵ -framework best parameter ϵ chosen is of small value that also approximates LSSVM.

In terms of computing requirements, all algorithms are comparable. Approximative computing time for all models with cross-validated parameters, averaged on all 10 classes, is of order \sim 5-10 minutes in CPU time on an Intel Xeon X7542 core.

	jump-	playing	phoning	riding	riding	reading	using	running	walking	taking
	ing	instrument		bike	horse		computer			photo
LSSVM [2, 8]	$45\!\pm\!2.0$	57 ± 2.5	$55.7{\pm}0.82$	36 ± 2.6	32 ± 3.0	53 ± 1.5	51 ± 1.0	33 ± 3.9	$42\!\pm\!1.9$	67 ± 3.6
M3E	$45\!\pm\!1.9$	57 ± 2.5	$54.6{\pm}0.93$	39 ± 4.6	33 ± 3.1	$54{\pm}1.6$	49 ± 1.9	36 ± 3.4	$43\!\pm\!1.9$	69 ± 3.6
$\alpha \to \infty$ [5]										
M3E [5]	$45\!\pm\!2.6$	56 ± 2.2	$55.6 {\pm} 0.73$	35 ± 3.5	32 ± 1.4	53 ± 2.1	44 ± 2.1	33 ± 4.0	$42\!\pm\!1.8$	67 ± 3.3
MSSVM[6]	51 ± 1.4	59 ± 3.9	57 ± 2.2	36 ± 3.5	35 ± 3.5	59 ± 2.4	51 ± 2.1	35 ± 4.2	$46\!\pm\!4.6$	71 ± 2.6
ε-	$44\!\pm\!2.3$	57 ± 2.8	55 ± 1.2	36 ± 1.6	31 ± 2.7	53 ± 1.7	46 ± 2.2	$31\!\pm\!3.5$	$40\!\pm\!1.6$	66 ± 4.2
framework [7]										
UF	$43\!\pm\!1.9$	57 ± 2.3	53 ± 1.6	32 ± 1.7	31 ± 2.5	53 ± 1.7	48 ± 3.1	33 ± 3.9	$41\!\pm\!1.7$	66 ± 3.5
$\mathrm{UF}\sim\mathrm{LSSVM}$	$44\!\pm\!2.3$	57 ± 2.5	54 ± 1.5	35 ± 2.9	35 ± 3.1	53 ± 1.4	50.6 ± 0.71	33 ± 3.7	$41\!\pm\!2.0$	66 ± 3.5
$UF \sim M3E$	$44\!\pm\!2.3$	57 ± 2.6	54 ± 1.5	32 ± 1.8	32 ± 2.8	53 ± 1.4	48 ± 3.1	33 ± 3.9	$41\!\pm\!2.0$	66 ± 3.5
$\rm UF \sim MSSVM$	$51\!\pm\!1.7$	59 ± 3.9	58 ± 2.6	37 ± 3.0	37 ± 4.0	60 ± 2.0	49 ± 1.7	36 ± 3.2	$44\!\pm\!2.4$	71 ± 2.6

Table 1: Per class test loss mean on the 5 folds (in %) \pm standard error of the mean (in %) with cross-validated parameters on the PASCAL VOC 11 dataset. The sign \sim means that the parameters of the UF were set to replicate the existing model.

	jumping	playing instrument	phoning	riding bike	riding horse
LSSVM [2,	C = 10	C = 1	C = 1	C = 10	C = 1
8]					
M3E	C = 10	C = 1	C = 1	C = 10	C = 1
$\alpha \to \infty$ [5]					
M3E [5]	$C = 10, \alpha = 100$	$C = 1, \alpha = 10000$	$C = 1, \alpha = 10000$	$C = 10, \alpha = 0.1$	$C = 10, \alpha = 100$
MSSVM[6]	C = 100	C = 1	C = 10	C = 10	C = 100
<i>ϵ</i> -	$C = 10, \epsilon = 0.01$	$C = 1, \epsilon = 0.1$	$C = 10, \epsilon = 1$	$C = 10, \epsilon = 0.1$	$C = 1, \epsilon = 0.001$
framework [7]				
UF	$C = 10, \epsilon_h =$	$C = 1, \epsilon_h = 0.1, \alpha =$	$C = 1, \epsilon_h =$	$C = 10, \epsilon_h = 0.1, \alpha =$	$C = 1, \epsilon_h = 0.1, \alpha =$
	$0.1, \alpha=2, \beta=1$	$2,\beta=0.5$	$0.001, \alpha=2, \beta=1$	$0.01,\beta=1$	$0.1, \beta = 1$
$\mathrm{UF}\sim$	C = 10	C = 1	C = 1	C = 10	C = 1
LSSVM					
$\text{UF} \sim \text{M3E}$	$C = 10, \alpha = 100$	$C = 1, \alpha = 1000$	$C = 1, \alpha = 10000$	$C = 10, \alpha = 2$	$C = 1, \alpha = 100$
$\mathrm{UF}\sim$	C = 100	C = 1	C = 10	C = 10	C = 10
MSSVM					

Table 2: Cross-validated parameters for each model on first five action classes. The sign \sim means that the parameters of the UF were set to replicate the existing model.

	reading	using computer	running	walking	taking photo
LSSVM [2,	C = 1	C = 1	C = 10	C = 1	C = 1
8]					
M3E	C = 1	C = 1	C = 10	C = 10	C = 1
$\alpha \to \infty$ [5]					
M3E [5]	$C = 1, \alpha = 100$	$C = 10, \alpha = 0.1$	$C = 10, \alpha = 100$	$C = 1, \alpha = 10000$	$C = 1, \alpha = 100$
MSSVM[6]	C = 10	C = 100	C = 100	C = 10	C = 1
<i>ϵ</i> -	$C = 1, \epsilon = 0.001$	$C = 100, \epsilon = 1$	$C = 10, \epsilon = 0.01$	$C = 10, \epsilon = 0.1$	$C = 1, \epsilon = 0.001$
framework [7	7]				
UF	$C = 1, \epsilon_h =$	$C = 10, \epsilon_h = 1, \alpha =$	$C = 10, \epsilon_h = 0.01, \alpha =$	$C = 1, \epsilon_h =$	$C = 1, \epsilon_h = 0.001, \alpha =$
	$0.1, \alpha=2, \beta=1$	$2, \beta = 1$	$0.01, \beta = 1$	$0.1, \alpha=2, \beta=1$	$0.1, \beta = 1$
$\mathrm{UF}\sim$	C = 1	C = 1	C = 10	C = 1	C = 1
LSSVM					
$UF \sim M3E$	$C = 1, \alpha = 10000$	$C = 10, \alpha = 2$	$C = 10, \alpha = 100$	$C = 10, \alpha = 10000$	$C = 1, \alpha = 1000$
$\mathrm{UF}\sim$	C = 10	C = 100	C = 100	C = 100	C = 1
MSSVM					

Table 3: Cross-validated parameters for each model on remaining five action classes. The sign \sim means that the parameters of the UF were set to replicate the existing model.

3.2. Multi-class gesture recognition

Table 4 reports the average loss on the test set for each model with respect to the noise level corrupting the dataset.

	$\sigma = 0 \mathrm{cm}$	$\sigma = 1 \text{cm}$	$\sigma = 5 \text{cm}$	$\sigma = 8 \text{cm}$
LSSVM [2, 8]	11 ± 1.1	11 ± 1.1	16 ± 1.5	22.8 ± 0.92
M3E $\alpha \rightarrow \infty$ [5]	11 ± 1.2	10.5 ± 0.40	18.6 ± 0.52	22.8 ± 0.94
M3E [5]	8 ± 1.1	9 ± 1.0	11 ± 2.1	14 ± 1.5
MSSVM[6]	9 ± 1.3	9 ± 1.1	12 ± 1.1	17 ± 1.6
ϵ -framework [7]	10 ± 1.1	11.0 ± 0.74	15 ± 1.6	22.0 ± 0.65
UF	8 ± 1.1	8.6 ± 0.67	11.7 ± 0.85	15 ± 1.6
$UF \sim LSSVM$	11 ± 1.1	11 ± 1.0	15 ± 1.5	22.8 ± 0.80
$\mathrm{UF}\sim\mathrm{M3E}$	8 ± 1.1	9.1 ± 0.59	11.7 ± 0.85	15 ± 1.6
$UF \sim MSSVM$	8 ± 1.1	9.0 ± 0.69	12 ± 1.0	15 ± 1.2

Table 4: Test loss mean on the 5 folds (in %) \pm standard error of the mean (in %) with cross-validated parameters on the MSRC-12 dataset, for different noise levels.

Tables 5 to 8 show the p-values for the statistical left-tailed t-test on the models' test loss values over the 5 folds performed for all pair of models. We can see that when no noise is added to the data, M3E with $\alpha \rightarrow \infty$ is outperformed by M3E, the UF, the UF replicating M3E and the UF replicating MSSVM, with statistical significance at level 0.05. The UF replicating LSSVM is also outperformed by the UF, the UF replicating M3E and the UF replicating MSSVM. As the noise level increases, LSSVM and the ϵ -framework are also outperformed by M3E, MSSVM, the UF, the UF replicating M3E and the UF replicating MSSVM.

In terms of computing requirements, all algorithms are comparable. Approximative computing time for all models with cross-validated parameters, averaged on all noise levels, is of order \sim 2-3 hours in CPU time on an Intel Xeon X7542 core.

	LSSVM [2,	M3E	M3E[5]	MSSVM [6]	€-	UF	${ m UF}\sim$	$\mathrm{UF}\sim$	${ m UF}\sim$
	8]	$\alpha \to \infty$ [5]			framework [7]		LSSVM	M3E	MSSVM
LSSVM [2, 8]	0.0000	0.3750	0.9355	0.8544	0.7283	0.9494	0.4998	0.9494	0.9494
M3E	0.6250	0.0000	0.9552	0.8984	0.8117	0.9644	0.6268	0.9644	0.9644
$\alpha \to \infty$ [5]									
M3E [5]	0.0645	0.0448	0.0000	0.3474	0.1520	0.5682	0.0613	0.5682	0.5682
MSSVM [6]	0.1456	0.1016	0.6526	0.0000	0.2898	0.7059	0.1422	0.7059	0.7059
ϵ -framework [7]	0.2717	0.1883	0.8480	0.7102	0.0000	0.8796	0.2676	0.8796	0.8796
UF	0.0506	0.0356	0.4318	0.2941	0.1204	0.0000	0.0479	0.5000	0.5000
$\rm UF \sim LSSVM$	0.5002	0.3732	0.9387	0.8578	0.7324	0.9521	0.0000	0.9521	0.9521
$\text{UF} \sim \text{M3E}$	0.0506	0.0356	0.4318	0.2941	0.1204	0.5000	0.0479	0.0000	0.5000
$\rm UF \sim MSSVM$	0.0506	0.0356	0.4318	0.2941	0.1204	0.5000	0.0479	0.5000	0.0000

Table 5: *p*-values for $\sigma = 0$ cm for statistical left-tailed t-test on the models' test loss values over the 5 folds. Value at indexes (*i*,*j*) of the table is the *p*-value for the left-tailed t-test with alternate hypothesis "model i outperforms model j". The sign ~ means that the parameters of the UF were set to replicate the existing model.

Table 9 shows cross-validated parameters for each model for each noise level. As explained in the main paper, the best parameters for the UF are never boiling down to either LSSVM, MSSVM or the ϵ -framework. In other words the best parameters combination (ϵ_h , α , β) always take in account the AD entropy of the hidden variable. Moreover, except for σ =1cm, the UF recovers M3E models, that is $\epsilon_h = 1$ and $\beta = 1$.

	LSSVM [2,	M3E	M3E[5]	MSSVM [6]	€-	UF	${ m UF}\sim$	$\mathrm{UF}\sim$	${ m UF}\sim$
	8]	$\alpha \to \infty$ [5]			framework [7]		LSSVM	M3E	MSSVM
LSSVM [2, 8]	0.0000	0.7739	0.9203	0.9127	0.6534	0.9683	0.4998	0.9443	0.9493
M3E	0.2261	0.0000	0.8700	0.8527	0.3178	0.9779	0.2051	0.9538	0.9501
$\alpha \to \infty$ [5]									
M3E [5]	0.0797	0.1300	0.0000	0.5015	0.0970	0.6693	0.0697	0.5009	0.5444
MSSVM [6]	0.0873	0.1473	0.4985	0.0000	0.1100	0.6574	0.0782	0.4991	0.5398
ϵ -framework [7]	0.3466	0.6822	0.9030	0.8900	0.0000	0.9772	0.3354	0.9530	0.9550
UF	0.0317	0.0221	0.3307	0.3426	0.0228	0.0000	0.0236	0.2760	0.3381
$\rm UF \sim LSSVM$	0.5002	0.7949	0.9303	0.9218	0.6646	0.9764	0.0000	0.9566	0.9602
$\text{UF} \sim \text{M3E}$	0.0557	0.0462	0.4991	0.5009	0.0470	0.7240	0.0434	0.0000	0.5591
$\mathrm{UF}\sim\mathrm{MSSVM}$	0.0507	0.0499	0.4556	0.4602	0.0450	0.6619	0.0398	0.4409	0.0000

Table 6: *p*-values for $\sigma = 1$ cm for statistical left-tailed t-test on the models' test loss values over the 5 folds. Value at indexes (*i*,*j*) of the table is the *p*-value for the left-tailed t-test with alternate hypothesis "model i outperforms model j". The sign ~ means that the parameters of the UF were set to replicate the existing model.

	LSSVM [2,	M3E	M3E[5]	MSSVM [6]	ε-	UF	${ m UF}\sim$	$\mathrm{UF}\sim$	$\mathrm{UF}\sim$
	8]	$\alpha \to \infty$ [5]			framework [7]		LSSVM	M3E	MSSVM
LSSVM [2, 8]	0.0000	0.0771	0.9376	0.9587	0.5495	0.9780	0.5255	0.9780	0.9466
M3E	0.9229	0.0000	0.9875	0.9987	0.9325	0.9999	0.9320	0.9999	0.9991
$\alpha \to \infty$ [5]									
M3E [5]	0.0624	0.0125	0.0000	0.3890	0.0751	0.4763	0.0673	0.4763	0.3238
MSSVM [6]	0.0413	0.0013	0.6110	0.0000	0.0559	0.6480	0.0457	0.6480	0.3948
ϵ -framework [7]	0.4505	0.0675	0.9249	0.9441	0.0000	0.9691	0.4752	0.9691	0.9280
UF	0.0220	0.0001	0.5237	0.3520	0.0309	0.0000	0.0242	0.5000	0.2408
$\rm UF \sim LSSVM$	0.4745	0.0680	0.9327	0.9543	0.5248	0.9758	0.0000	0.9758	0.9409
$\text{UF} \sim \text{M3E}$	0.0220	0.0001	0.5237	0.3520	0.0309	0.5000	0.0242	0.0000	0.2408
$\rm UF \sim MSSVM$	0.0534	0.0009	0.6762	0.6052	0.0720	0.7592	0.0591	0.7592	0.0000

Table 7: *p*-values for $\sigma = 5cm$ for statistical left-tailed t-test on the models' test loss values over the 5 folds. Value at indexes (*i*,*j*) of the table is the *p*-value for the left-tailed t-test with alternate hypothesis "model i outperforms model j". The sign ~ means that the parameters of the UF were set to replicate the existing model.

	LSSVM [2,	M3E	M3E[5]	MSSVM [6]	€-	UF	${ m UF}\sim$	$\mathrm{UF}\sim$	${ m UF}\sim$
	8]	$\alpha \to \infty$ [5]			framework [7]		LSSVM	M3E	MSSVM
LSSVM [2, 8]	0.0000	0.5026	0.9985	0.9885	0.7603	0.9972	0.5000	0.9972	0.9990
M3E	0.4974	0.0000	0.9985	0.9883	0.7541	0.9972	0.4973	0.9972	0.9989
$\alpha \to \infty$ [5]									
M3E [5]	0.0015	0.0015	0.0000	0.1308	0.0028	0.4034	0.0015	0.4034	0.2900
MSSVM [6]	0.0115	0.0117	0.8692	0.0000	0.0205	0.8100	0.0113	0.8100	0.7672
ϵ -framework [7]	0.2397	0.2459	0.9972	0.9795	0.0000	0.9949	0.2209	0.9949	0.9981
UF	0.0028	0.0028	0.5966	0.1900	0.0051	0.0000	0.0029	0.5000	0.3935
$\rm UF \sim LSSVM$	0.5000	0.5027	0.9985	0.9887	0.7791	0.9971	0.0000	0.9971	0.9990
$\text{UF} \sim \text{M3E}$	0.0028	0.0028	0.5966	0.1900	0.0051	0.5000	0.0029	0.0000	0.3935
$\rm UF \sim MSSVM$	0.0010	0.0011	0.7100	0.2328	0.0019	0.6065	0.0010	0.6065	0.0000

Table 8: *p*-values for $\sigma = 8cm$ for statistical left-tailed t-test on the models' test loss values over the 5 folds. Value at indexes (*i,j*) of the table is the *p*-value for the left-tailed t-test with alternate hypothesis "model i outperforms model j". The sign ~ means that the parameters of the UF were set to replicate the existing model.

	$\sigma = 0$ cm	$\sigma = 1 \mathrm{cm}$	$\sigma = 5 \mathrm{cm}$	$\sigma = 8 \mathrm{cm}$
LSSVM [2, 8]	C = 100	C = 100	C = 100	C = 100
M3E	C = 100	C = 100	C = 100	C = 100
$\alpha \to \infty$ [5]				
M3E [5]	$C = 1000, \alpha = 0.01$	$C = 1000, \alpha = 0.01$	$C = 1000, \alpha = 0.01$	$C = 100, \alpha = 2$
MSSVM[6]	C = 100	C = 1000	C = 1000	C = 1000
<i>ϵ</i> -	$C = 100, \epsilon = 0.1$			
framework [7]				
UF	$C = 1000, \epsilon_h = 1, \alpha =$	$C = 1000, \epsilon_h = 1, \alpha =$	$C = 1000, \epsilon_h = 1, \alpha =$	$C = 1000, \epsilon_h = 1, \alpha =$
	$0.01, \beta = 1$	$2, \beta = 0.5$	$0.1, \beta = 1$	$0.1, \beta = 1$
$\mathrm{UF}\sim$	C = 100	C = 100	C = 100	C = 100
LSSVM				
$\text{UF} \sim \text{M3E}$	$C = 1000, \alpha = 0.01$	$C = 1000, \alpha = 0.01$	$C = 1000, \alpha = 0.1$	$C = 1000, \alpha = 0.1$
$\mathrm{UF}\sim$	C = 1000	C = 1000	C = 1000	C = 1000
MSSVM				

Table 9: Cross-validated parameters for each model for each noise level. The sign \sim means that the parameters of the UF were set to replicate the existing model.

References

- [1] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (VOC) challenge. International Journal of Computer Vision, Volume 88, 2010.
- [2] P. F. Felzenszwalb, D. A. McAllester, and D. Ramanan. A discriminatively trained, multiscale, deformable part model. In *CVPR*, 2008.
- [3] R. Horst, P. M. Pardalos, and N. V. Thoai. Introduction to Global Optimization. Springer, 2000.
- [4] T. Joachims, T. Finley, and C. J. Yu. Cutting-plane training of structural svms. Machine Learning, 77(1):27-59, 2009.
- [5] K. Miller, M. P. Kumar, B. Packer, D. Goodman, and D. Koller. Max-margin min-entropy models. In AISTATS, 2012.
- [6] W. Ping, Q. Liu, and A. Ihler. Marginal structured SVM with hidden variables. In ICML, 2014.
- [7] A. G. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun. Efficient structured prediction with latent variables for general graphical models. In *ICML*, 2012.
- [8] C.-N. Yu and T. Joachims. Learning structural SVMs with latent variables. In ICML, 2009.
- [9] A. L. Yuille and A. Rangarajan. The Concave-Convex Procedure (CCCP). In NIPS, 2002.