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Abstract

Infections with the human immunodeficiency virus type 1 (HIV-1) are treated with combina-
tions of drugs. Unfortunately, HIV responds to the treatment by developing resistance mutations.
Consequently, the genome of the viral target proteins is sequenced and inspected for resistance
mutations as part of routine diagnostic procedures for ensuring an effective treatment. For pre-
dicting response to a combination therapy, currently available computer-based methods rely on
the genotype of the virus and the composition of the regimen as input. However, no available tool
takes full advantage of the knowledge about the order of and the response to previously prescribed
regimens. The resulting high-dimensional feature space makes existing methods difficult to apply
in a straightforward fashion. The machine learning system proposed in this work, sequence boost-
ing, is tailored to exploiting such high-dimensional information, i.e. the extraction of longitudinal
features, by utilizing the recent advancements in data mining and boosting.

When applied to predicting the latest treatment outcome for 3,759 treatment-experienced patients
from the EuResist integrated database, sequence boosting achieved superior performance com-
pared to SVMs with RBF kernels. Moreover, sequence boosting allows an easy access to the
discriminative treatment information.

Analysis of feature importance values provided by our model confirmed known facts regarding
HIV treatment. For instance, application of potent and recently licensed drugs was beneficial for
patients, and, conversely, the patient group that was subject to NRTI mono-therapies in the past
had poor treatment perspectives today. Furthermore, our model revealed novel biological insights.
More precisely, the combination of previously used drugs with their in vivo response is more in-
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formative than the information of previously used drugs alone. Using this information improves
the performance of systems for predicting therapy outcome.

KEYWORDS: data mining, discriminative sequence features, boosting, HIV, clinical, optimiza-
tion
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1 Introduction

The human immunodeficiency virus (HIV) was discovered inghdy 80's (Barré-
Sinoussi et al., 1983). Until now, it has claimed the livesrafre than 25 million
people, and currently more than 33 million people are regbid be infected with
HIVL. HIV is a retrovirus, i.e. its genome is coded in RNA, whiclstiihas to be
reversely transcribed to DNA for exploiting the replicatimachinery of the host
cell (Fields et al., 2007). The process of reverse transonps carried out by the
viral protein reverse transcriptase (RT). Current HIV #ris limited to suppress-
ing the viral load (i.e. number of copies of viral RNA in one ailblood serum)
and therefore delaying disease progression to AIDS andhdd@aie high mutation
rate of HIV (Gao et al., 2004) is due to RT lacking a proof-iegdnechanism.
This poses a challenge to antiretroviral treatment, sihtsednly a matter of time
until mutations are generated that allow the virus to reypdian the presence of a
drug. Due to the replicative advantage, these drug resistantations are selected
evolutionarily and cause the failure of the ongoing regimarorder to delay resis-
tance development, modern anti HIV therapies compriseiphltirugs attacking
the virus at multiple stages of the replication cycle (Clared Hance, 2004). Fu-
sion inhibitors (FIs) prevent the entry of HIV into its hoslls. Nucleoside and
non-nucleoside reverse transcriptase inhibitors (aldey NRTIs and NNRTISs,
respectively) inhibit the viral RT. Protease inhibitor¢g)Fbind to the active site of
the viral protease that cleaves precursor proteins intotiomally active units (for
further details see for instance Clavel and Hance (2004)).

Eventually also these highly active antiretroviral theesp(HAARTS) fail
and the treating clinician has to find a new combination ofvacantiretroviral
drugs. This task is complicated by the phenomenon of cresistance, which
means that resistance mutations selected by one drug alfer cesistance against
drugs with same mode of action targeting the same viral prot® arrive at a ben-
eficial selection of drugs to administer to the patient, thguence of the genetic
regions coding for the viral target proteins is obtainedrfiibe patient’s virus. This
sequence is then inspected for resistance mutations. fdtess is state-of-the-art,
but one major obstacle remains: as soon as drug resistarteéions do no longer
present a replicative advantage, they may disappear frerwuinently predominant
viral variant. This can happen if a treatment is altered arspd. Unfortunately,
the patient harbors previous viral variants in the form aiyimal DNA in several
infected tissues (Fields et al., 2007). This constitute®eory of resistance muta-
tions provoked by previous treatments. As a consequencylieg of drugs typi-

 http://www.unaids.org/en/KnowledgeCentre/HIVData/GlobalReport/2008/2008_
Global_report.asp
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cally leads to a rapid reselection of previously existingisg&nce mutations, which
are not prevalent in the predominant viral variant in thequas blood and conse-
guently are not detectable by conventional sequencingadsth~or avoiding such a
short-term viral rebound, the treating clinician consgtéie patient’s treatment his-
tory, i.e. the previously administered drugs, in additionhite viral genotype when
selecting a new regimen. Treatment history has long beegnézed as clinically
relevant (Bratt et al., 1998). More recently it was showrt th&ing all available
(past and present) genotypes of the patient into accounbirap the prediction of
treatment response in heavily pretreated patients (Zeltioatral., 2009)

For assisting the interpretation of genotypic sequenadssstal learning
methods were used to assess resistance against single(Baeegenwinkel et al.,
2002). This concept was recently extended to preiiotivo response to com-
bination treatments (Altmann et al., 2007, 2009; Larde730 However, so far
computer-based methods make use of the patient’s treatmstoty only by us-
ing binary indicators of previous exposure to a drug as auftit features (Bickel
et al., 2008; Larder, 2007; Rosen-Zvi et al., 2008). Whils tepresentation per-
fectly summarizes previous drug applications, it may miggartant and informa-
tive cause-effect relationships, such as: the drug efaxi(EFV) selects mutation
RT103N, which leads to the administration of a new drug caoration including
lopinavir (LPV), but not any drug from the same class as EF&& (Bigure 2 for
an example). Here, the notation RT103N indicates that theé-type amino acid
at position 103 in the RT was replaced with Asparagine. THigRitation alone
is sufficient to confer complete resistance to the NNRTIs BRd NVP (Antinori
et al., 2002). Therefore, the failure of the latest NNRTI teamng regimen may
be attributed to the occurrence of mutation RT103N as respdom the previous
use of EFV. It is worth noting, however, that in clinical ptige viral genotypes
are not always measured, and consequently important muogsasuch as RT103N
go unnoticed. In that case the treating clinician has to idenghe possibility of
accumulation of NNRTI resistance mutations from the presip administered reg-
imens.

A further indicator for accumulated resistance mutatienghe number of
treatment changes (#TC), which is defined as the number @fstitihe patient’s
treatment has been changed or interrupted. A higher #T@ases the risk of
the patient experiencing a treatment failure (see Figurepdinting towards the
increasing difficulty of treating patients that experiethogany treatment changes.
This is a direct consequence of the accumulated mutatiotigigurrently domi-
nant viral variant and in the viral reservoirs. Informatmmthe treatment history is
useful for predicting response to antiretroviral therapgyréatment-experienced pa-
tients, since mutations in the viral reservoirs are notatat#e by standard genotyp-
ing. Therefore, the validation of our method, calkztjuence boostinfgcuses on

http://www.bepress.com/sagmb/vol10/iss1/art6 2
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Figure 1:Ratio of patients with long treatment lines. The number @&atment changes is defined
as the number of times the patient’s treatment has been etargnterrupted. The figure depicts
the increase of the treatment failure rate as the numbeeafrtrent changes grows, pointing to the
increasing difficulty of treating patients that experieshogany treatment changes.

treatment-experienced patients. In the following we pnegeather related work. In
Section 2 we introduce our source for HIV treatment dataghResist Integrated
database. Furthermore, we explain how patient data olot&iom the database is
converted intsequence featurébat can be used by our learning metlsedjuence
boosting Briefly, sequence boostingassifies the response to the current therapy
based on all events in the patient’s treatment record (geabtypes, previously ad-
ministered therapies, and response to these therapiesj codsideration of their
order. In essence, the resulting method is a linear classi$i@ag non-linear fea-
tures. In Sections 3 and 4 we present the results and disoussspectively, of our
computational experiments. And finally we conclude withttecs.

1.1 Related work

The prediction ofn vivo response to antiretroviral therapy has been approached in
previous works. For instance, Rosen-Zvi et al. (2008) usgitic regression mod-
els with different sets of features for predicting the oatecof antiretroviral combi-
nation therapies. Among these features were up to threameraction terms be-
tween indicator variables for drugs, previously adminetedrugs, and mutations.
Thesequence boostingethod presented here, considered uN4e@ay interaction
features, wher@l is the number of treatment events in the longest treatmentade
in the training data. Other approaches, such as Bayesiamoret (Deforche et al.,
2006) or transfer learning (Bickel et al., 2008) were afpt@the same treatment
outcome prediction problem, but none of them employed sueingg number of
features.

Although the goal is different, a closely related and wélidsed topic is
the prediction of the phenotypic drug resistance. Thisdapisimilar in a sense
that it uses genotypic information as features and the tasgihe prediction of

Published by Berkeley Electronic Press, 2011 3
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binary or real-valued response values. Various statlsiéeaning methods have
been applied in this area, including linear regression ({Raftitz et al., 2006; Rhee
et al., 2006; Saigo et al., 2007), decision trees (Beerdwbigt al., 2002), support
vector machines (SVMs) (Beerenwinkel et al., 2003; Singl.et2805; Sing and
Beerenwinkel, 2007), artificial neural networks (Wang aratder, 2003; Larder,
2007), bayesian networks (Deforche et al., 2008) and Mankogtels (Foulkes and
DeGruttola, 2002, 2003).

2 Materials and Methods

2.1 The EuResist integrated database

The EuResist integrated database (release November 2@8¢ch is the source of
data for the computational experiments, comprises data four different coun-
tries: Germany, Italy, Luxembourg, and Sweden. The datbastains 61,831
different treatments from 18,467 patients collected inyars 1987 through 2007.
For each patient the viral load (VL) measurements, thesa(giets of administered
drugs), and genotypes are recorded.

For instance, Figure 2 shows an excerpt of a patient’s tregitnecord, cov-
ering the last two treatment switches. This patient has testarwith
FTC+TDF+LPV+RTVb and was switched to 3aTC+AZT+EFV after asrease in
viral load. Viral suppression was not maintained for a loegqgd of time, there-
after FTC+TDF+NVP was selected. The viral load did not daseein response
to this treatment and the therapy was therefore consideteshment failure. At
the end of the second treatment term, the mutation 103N wsaredd in the RT
coding region.

By definition, baseline VL and genotype are only assigned titea@ment,
if they were obtained at most 90 days before treatment gidudllow-up VL is at-
tributed to a treatment only if it is available in a specifioé-interval (here: between
28 and 84 days) after onset of the therapy. Following theajinds of the EuResist
consortium (Rosen-Zvi et al., 2008), treatment respondE®tomized to success
and failure, with a treatment success defined by a drop ofath@nf-up VL either
below the limit of detection, i.e. 400 copies/ml, or by twalers of magnitude
compared to the baseline VL. If no follow-up VL is availabhetihat time frame, the
corresponding treatment receives no label. Of note, the frame of one to three
months for the follow-up VL in the definition is consideredres-term response,
as opposed to medium-term response of about 6 months anddongesponse
with even more distant end-points.

http://www.bepress.com/sagmb/vol10/iss1/art6 4
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Figure 2: Example of a treatment record (top) and its sequence rapegim (bottom). (top)
The chart shows the treatment record of a patient over thédagreatment switches. This patient
has started treatment with FTC+TDF+LPV+RTVb, and was dwitcto 3STC+AZT+EFV after an
increase in viral load. Suppression of viral load by the secegimen did not last long, there-
after FTC+TDF+NVP was selected. Here, the viral load diddestrease and thus the regimen is
considered a treatment failure. At the end of the seconthtiexat term, the mutation 103N was ob-
served in the RT coding region (RT103N). (bottom) Sequeepeasentation of the treatment history
corresponding to the chart above.

2.2 Sequence representation of treatment history

The treatment records stored in the EuResist Integratebds¢ have to be con-
verted for making it a suitable input faequence boostingeach record in our
training data takes the foriix;,y;) wherex; € {0,1}7*F andy, € {0,1} denote the
treatment sequence of theh patient and the outcome of the latest therapy, respec-
tively. We use the definition of treatment outcome as preskintthe previous para-
graph.F is the largest number of treatment events in each treatimentthe num-

ber of drugs (25)” + “the number of mutations (108)” + “the carne of the therapy
(2)” = 134. The list of all the treatment events is summarizetthe Appendix (Ta-

ble Al1). T is the length of the longest treatment sequence in trairaa, dvhich, in

our case, is 38. The list of 108 mutations is based on the astta@ined by the Inter-
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national AIDS Society (Johnson et al., 2008). The binarytmeg is equivalently
represented as a sk¥f, containing all indices and f such thatx; = 1, where
{t)1<t < T} and{f|1< f <F} are indices for the treatment and the additional
information (such as observed mutations before the onstteotherapy, applied
drugs and their short-time response) in each treatmemtecésely. For instance,
the appearance of events and f» in treatmentt followed by the appearance of
eventsfz and fy4, is represented ag r, A X 1, A %+1.1; A %+1.f,. In the following,
we represent the corresponding sequence featufgasx,} — {X3 A x4}, where
the — operator means that the treatment on the right hand sideafeithe treat-
ment on the left hand side. This representation is a gemat@n of the treatment
change episodes (TCE) presented by Altmann et al. (2007rulfs, mutations,
and therapy outcome occur simultaneously in the treatntleet, the order of the
events is i) the observed mutations, ii) prescribed drugigvied by iii) therapy
outcome. This ordering originates from the observation #heesistance induced
treatment change is usually preceded by the sequencing ofirdd population in
the patient. Likewise, the therapy outcome has to be precbgea change in the
drug combination.

Example 1 A sequence {FTCATDFALPVARTVb}—{3TCAAZTAEFV} —
{RT103NAFTCATDFANVPAfailure} represents a treatmentincludifd C, TDF,
LPV andRTVb followed by the combinatioBTC+AZT+EFV. At the end the sec-
ond treatment, a mutatioRT103Nis observed andFTC+TDF+NVPis adminis-
tered, which turned out to be a treatment failure.

The termssequencandsequence featui@e formally defined as follows:

Definition 1 (Sequence). A sequence-5s;,Sp,...St) is defined as an ordered
list of elementsis Each element;ss a finite set of integers corresponding to the
indicators for treatment events in the t-th treatment.

Example 2 In Example 1, shas treatment eventsTC, TDF, LPV, RTVb, s, has
treatment event3TC, AZT, EFV, and g has treatment evenBT103N FTC, TDF,
NVP and failure.

Definition 2 (Sequence feature). A sequentéssa sequence feature of & there
exists a strictly increasing element mapping such that eeiment of 5is a subset
of its corresponding element ot.s

Example 3 {EFV}—{NVP} is a sequence feature of the sequence in Example 1,
since {}C{FTC, TDF, LPV, RTVH, {EFV}C{3TC, AZT, EFV} and {NVP}C
{RT103N, FTC, TDF, NVP, failurg, where{} stands for the empty set.

http://www.bepress.com/sagmb/vol10/iss1/art6 6
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Given two sets of sequences corresponding to completertesdtrecords from two
groups of patients (one experiencing a treatment succeie iatest treatment and
the other a treatment failure), we want to identify sequeieegures (treatment
change episodes) that are observed frequently in one gseinfbequently in the
other set.

2.3 Sequence boosting

Sequence boostirgassifies the response to the current therapy based orealisev

in the patient’s treatment record (viral genotypes, prasip administered thera-
pies, and short-term response to these therapies) undgdeaation of their order.

In essence, the resulting method is a linear classifier usanglinear features. To
this end, thesequence boostingethod constructs a feature space progressively by
adding a sequence feature in each iteration. We follow tHgdoBt (Demiriz et al.,
2002) approach in which the parameter vector is regulanzed the L1-norm
(LASSO) resulting in most sequence features having zerght®i This is particu-
larly useful in our case, since even if the whole sequenderfeapace is expensive

to construct, we can disregard and skip adding the sequeaterés with zero-
weights to the feature space. Létbe the sequence representation of the patient’s
treatment record, anslbe an arbitrary sequence feature. We represent the presence
or absence of in X by an indicator functiori (X) that returns 1 ifs€ X, and 0
otherwise. Our classifier is a linear combination of seqadaatures:

f(X) = sgn( > o s<x>> ®

wheres s an instance of the complete sequence feature sgaderived from the
training set, ands is the corresponding weight to be learned.

In order to illustrate the function of the indicator funetiturther, consider follow-
ing example of a treatment histdry

X; = {FTCATDFALPVARTVb} — {3TCAAZT AEFV}
— {RT103NAFTCATDFANVP A failure},

and the following examples for sequence features:
s1 = {EFV Afailure}, s, = {NVP Afailure},s3 = {EFV} — {NVP}.

The sequence featuras and s3 occur in the treatment histor¥y, buts, does
not. Therefords,(X1) = I5,(X1) =1 andls (X1) = 0. Unlike in the conventional

2Figure 2 illustrates derivation of the sequence represientcom the actual treatment history.

Published by Berkeley Electronic Press, 2011 7
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representation of features as fixed size vectors, this sequepresentation allows
us to compare treatment histories of different length. &hgwe circumvent the
missing data problem. For instance, the treatment responaepast regimen is
undoubtfully useful, but unfortunately not always meadward recorded. Figure 3
illustrates the training and evaluation procedurseduence boosting

Patient 1|{FTCATDFALPVARTVb}—{3TCAAZTAEFV}—{ RT103NAFTCATDFANVP} |f ai | ur e
Patient 2|{FTCATDFAEFV}—{ 3TCAAZTANVP} failure
train| Patient 3|{RT103NAFTCATDFASQVARTVb}—{ 3TCAAZTAEFV}—~{ 3TCAAZTANVP} |fai | ure
data oatient 4] { FTCATDRALPVARTVD}—{ 3TCAAZTANVP} success
Patient 5| { ABCAd4TANVP}—{ FTCAAZT ANVP} success
Patient 6|{FTCATDFAEFV}—{ FTCATDFALPVARTVD} success
@ Trai ni ng by sequence boosting
Prediction on patient 7:
Lest Ipatient 7‘{FTCATDFAEFV}—.{ FTCANVPATDFAABC} ‘fai | ure‘

Figure 3: Schematic figure of training and evaluation sg#quence boostingWe use patients
whose past treatment records and latest treatment outa@m@esailable. In this example, we have
two groups of patients whose recent treatment outcome tirer dailure (1,2,3) or success (4,5,6).
While the data from these six patients are used for trairiegystem, the information on patient 7 is
reserved only for evaluation of the system. In this examidy one sequence feature EFVNVP

is obtained during training, since presence or absencdafahture in treatment history perfectly
discriminates one group from the other. Using this rule,shstem predicts the recent treatment
outcome of the patient 7 as failure since this patient alsodxperienced the treatment of EFV
followed by NVP: EFV—-NVP.

2.3.1 Problem formulation
Our objective function is the same as the one of LPBoost (Deret al., 2002)

(also known as the Linear Programming Machine (Scholkeoypf &mola, 2002)),
i.e. it maximizes the margip:

http://www.bepress.com/sagmb/vol10/iss1/art6 8
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n
maX, ¢ o p—D_ZlEi, 2)
1=
st. Z Vidsls(X)+&>p i=1...n, (3)
s€.s
> as=1 a>0, &=>0, (4)
s€.s

where we seD = % according to Demiriz et al. (2002). This problem is hard to
solve, due to the large number of sequence features andgspornding weightsr.
Therefore we consider a restricted problem on a subset adblasa: we start
with an empty set of variables, and a new variable is addedch #eration. By the
duality of linear programming, adding a variable in the @imroblem is equivalent
to adding a constraint in the dual problem. The former apgras often termed
column generation, and the latter is referred to as comstgaineration, or cutting-
plane method. The dual problem of the above linear programmmioblem is:

miny,, Y, (5)
n
st. ZYi)\Hs(Xi) <y se.7, (6)
i=
n
Ai=1, 0<A<D. 7)
2,

From the dual point of view, only a subset of constraints iBsdu® determine the
current solution, and a new constraint that most stronglates the constraint (6)
is added to the solution set in each iteration. In our caseinfinthe most strongly
violated constraint (constraint generation subproblesr@quivalent to finding the
sequence featuewhich maximizes thgain function

a(s) = iyi)\ils(xi)- (8)

In the following subsection, we give a branch-and-boundritlgm calledDiscrim-
inative PrefixSparto solve this constraint generation subproblem. $hquence
boostingalgorithm terminates if the newly obtained constraintsasg(s) < y+¢,
whereg is a parameter for early stopping, ant the value of the dual solution. As
soon as the dual problem is feasible by takidgy+ €), then the weak duality of
linear programming tells us that the value of the primal 8otuy* = p—D S ;&

is bounded from above by < y-+ €. This suggests that even if we were to include
all the sequence features, the value of the primal solutonbe increased at most
by €. In all the experiments is set to 001. The pseudocode sequence boosting
is given in Algorithm 1.

Published by Berkeley Electronic Press, 2011 9
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Algorithm 1 sequence boosting
Require: X,y,v, ¢
Ensure: a,H
1: procedure sequence boosting
2: HO =, )\i(o) =1/n, level=1

3: loop

4: s* « Discriminative PrefixSpai , X, y)

5: if Zin:]_Yi)\ils* (Xi) < y+ethen

6: break > No more sequence features
7 end if

8: H—HU{s‘} > Update the sequence feature set
9:

(A,a) < Solve the dual problem (5),(6),(7)
10: end loop

11: return (a)

12: end procedure

2.3.2 Searching for sequence features

A straightforward approach to finding the sequence featurielwmaximizes the
gain function (8) out of all possible sequence features f&r$benumerate all se-
guence features using PrefixSpan (Pei et al., 2004), thepwienthe gain (8) for
each of them, and at the end take the maximum. In the Prefix&§pamach, the
sequence features are organized in a search tree. The m®tofidhe tree is an
empty set, and each node is extended by adding one item tetheisce of its
parent node. At each node, the frequency (number of ocaeseim the dataset:
support) of the sequence feature is counted, and used éoptuaing.

In our case, instead of the frequency, the gain function msprted at each
node, since we are interested in discriminative sequeratartes rather than fre-
guent ones (Figure 4). This tree is traversed by one of thie baarch algorithms
such as depth first search (DFS), breath first search (BFSheok* algorithm.
Here, we used a variant &*, and deepened the tree depth gradually (Nowozin
et al., 2008). This strategy makes pruning effective whenetlare short high-gain
sequence features.

For increasing efficacy, the size of the search tree has ioited: suppose
that one has traversed the tree up to the node with a sequeaitees, and the
maximum gain found so far ig,. If there are no sequence features among the su-
persets of the features which exceed the gaigy,r, then one can quit the traversal
at this point and prune the downstream part of the tree. lerdajudge whether
the tree can be pruned sitwe use the following theorem (Morishita, 2001; Kudo
et al., 2005):

http://www.bepress.com/sagmb/vol10/iss1/art6 10
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X y A

Patient 1|{FTCATDFALPVARTVb}—{ 3TCAAZTAEFV}—{ RT103NAFTCATDFANVP} |fai | ure(-1)|1/ 6
Patient 2|{FTCATDFAEFV}—{ 3TCAAZTANVP} failure(-1)|1/6
train| Patient 3| {RTLO3NAFTCATDFASQVARTVE}—{ 3TCAAZTAEFV}—{ 3TC\ AZTANVP} |f ai | ure(-1)| 1/ 6
data ['patient 4| { FTCATDEALPVARTVD}—{ 3TCAAZTANVP} success(1) |1/6
Patient 5| {ABCAd4TANVP}—{ FTCAAZTANVP} success(1) |1/6
Patient 6|{FTCATDFAEFV}—{ FTCATDFALPVARTVD} success(1) |1/6

Fi ndi ng discrimnative sequence features
by branch-and-bound search
3T(‘AAZT} -3/6 + 1/6 = — -2/6 3TCAAZT/NVP}: -2/6 + 1/6 = -1/6
{3TC}:-3/6 + 1/6 = -2/6 \
3TO\NVP} -2/6 + 1/6 = -1/6

EFVA3TC}:-2/6 + 0 = -2/6

EFVAAZT}:-2/6 + 0 = -2/6

{EFV}—~NVP}:-3/6 + 0 = -3/6
EFV}—3TC}:-2/6 + 0 = -2/6

{EFV}:-3/6 + 1/6 = -2/6

{}:-3/6 + 3/6 =0
{AZT}:-3/6 + 2/6 = -1/6

Figure 4: A treatment history in sequence representation (top) ancoitresponding search tree
(bottom). In each oval of the search tree, a sequence festunekthe derivation of its corresponding
gain @(s) = ziG:lyi)\i I's(Xi)) are shown. This example shows the exploration of the seegetat the
first iteration ofsequence boostinghere theAs are initialized as uniform values. In this case the
search tree explores sequence features which appeartitggunepatients 1 to 3 (whose treatments
turned out to be a failure), but infrequently in patients &btowhose treatments turned out to be
successful), or vice versa. The most discriminative seceiéeature{EFV — NVP} is marked in
the bold oval.

Theorem 1 For any sequence featurésuch that ST s, g(s') < deur, if

maxy 3 A, A <Gar (9)
{i|s§xi>yi:0} {i|ngi,yi:l}

In terms of time complexitgequence boosting NP-hard due to the NP-
hardness of its subproblem: PrefixSpan. The scalabilityuohoethod depends on
the size of the dataset and its density. If the data are dédmsethe output length
of the PrefixSpan increases and the total speed decreasddyquiiowever, our
data representation is sparse, i.e., most of the sequeattede appear much less
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frequently than the size of the datasetThus intersection operations on a search
tree can efficiently prune candidates, and we do not needatclsdor very long
sequence features. This sparseness helps us exploringeavgpizh at first glance
seems intractably large.

2.4 Computational experiments

The first computational experiment focused on the compaigsequence boost-
ing with logistic regression and SVMs using linear and nonlifesinels to investi-
gate the discriminative power of the sequence featureseSive space of sequence
features is too large to be utilized as feature vector for S\&kld logistic regression,
the patient’s treatment record has to be encoded in a diffevay’. In the second
experiment, we compared which one of the treatment infdomattherapy, geno-
type, or therapy outcome - is important for the predictionrthermore sequence
boostingallows easy access to discriminative treatment informmatibhus, in the
final experiment, we filtered and interpreted selected sempieatures retrieved by
sequence boosting

For improving interpretability, we encoded treatment miation of the cur-
rent therapy with different integers than treatment infation from past therapies.
Additionally, we used three special indicators represgnthe absence of all Pls,
all NRTIs, or all NNRTIs denoted as NoPIs, NoNRTIs, or NONN&Tespectively.
Furthermore, it is desirable that each treatment contamr® rthan one treatment
event, since a larger set with more treatment events su¢fi@6 A succes is
more informative than justsuccess. However, it could be disadvantageous for the
classification performance to simply set the minimum nundfevents in a treat-
ment too large. The reason is that a treatment with more swstless frequent
in the training set, and can represent only smaller fraatiiothe data. Therefore,
in an initial experiment, we varied the parameter of the nhoakich controls the
minimum number of events in a treatment and observed itseinfle on the predic-
tion accuracy. The optimal value identified in this initiapperiment was used for
all remaining experiments.

2.4.1 Comparison with other methods

In this experiment we compasequence boostingith SVMs and logistic regres-
sion. For SVMs and logistic regression, we provided a featector of fixed length

3SVMs with non-linear kernels can make use of the same amdunfamation. Extracting
discriminative rules from non-linear kernels, howeveghsllenging. Thus, we do not pursue this
interesting direction for engineering a suitable kernel.
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that has i) binary indicators for drugs and mutations of thmeent treatment, ii) inte-
ger values counting the frequencies of the drugs in paghesas, iii) integers rep-
resenting the number of times a mutation was observed inquegenotypes, and
iv) three additional numerical variables, which indicdte humber of successes and
failures in the past as well as the total number of treatmbahges, respectively.
This feature representation extends the ones used in Bitkél(2008) and Rosen-
Zvi et al. (2008). Additionally, since it is a more common regentation, we used
binary indicators instead of frequencies for previouskydidrugs and observed mu-
tations. Thus, the representation provides the same dai@reiinformation as the
sequence features but without their order, i.e. the segueriormation. SVMs
with polynomial kernels of degree 2 and 3 correspond to ttexaction features in
Rosen-Zvi et al. (2008).

We prepared three datasets depending on the number of éeathranges:
i) patients with #TC> 10, ii) patients with #TC> 5, and iii) patients with #TC
> 1. The baseline accuracy, i.e. frequency of successfuhpies of these settings
is 0.783, 0.832 and 0.851, respectively. There were 3,786ra in total, 1,830
with #TC> 5 and 646 with #TCG 10.

For evaluation, we performed 10-fold cross-validation vehén each fold,
80% of the data were used for training, 10% were used for adgthe regulariza-
tion parameter, and the other 10% were used solely for tHenpeaince assessment.
For SVM andsequence boostinthe regularization parameteywhich controls the
balance between overfitting and underfitting, was chosen {i@.1, 0.2,..., 0.6}.
For estimating the baseline performance in terms of acguvee employ two dif-
ferent predictors: one that performs random guesses dangaalthe prevalence of
the classes (guess), and one that always predicts the tpajlass (majority). For
the former the performance is computedés (1 —x)?, with x being the frequency
of successful therapies. This baseline with backgroundabiities has previously
been employed by Baldi et al. (2000).

Performance of the classifiers is assessed in both, accanacgrea under
the receiver operating characteristics (ROC) curve (AUC)rder to test for signif-
icance of the observed improvementsagiquence boostimyer the other methods,
we employed a Wilcoxon rank-sum test with a 5% significancelle

2.4.2 Comparison of different treatment information

In principle, there are three types of treatment infornmatgenotype (GT), therapy
(TH) and therapy outcome (TO). For addressing the questlinhitreatment in-
formation or which interactions of treatment informatiae anost informative for
the classification, the training data were restricted tdolewing settings: i) only
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genotype information (GT), ii) only therapy informationHJ, iii) only therapy
outcome information (TO), and their two-way combinations, iv) therapy out-
come and genotype, v) therapy and therapy outcome, andevgii and genotype.
We compared all of these combinations ussegjuence boostinga 10-fold cross-
validation (using the same setup as described in the prewection). In order to
ensure a fair comparison of the different treatment infaromawith the baseline
method, i.e. predictions based on the genotype precedaénapy, we selected a
subset of patients with a genotype attributed to the cutreatment. After this re-
striction 446 patients remained and the correspondindibaseccuracy (frequency
of successful therapies) wasr@4.

2.4.3 ldentifying discriminative sequence features

In general, the set of features selected by a given featlgets® method depends
on the training set. The LASSO feature selection employesddayuience boosting
poses no exception of this fact (Zou, 2006). For ensuringrébestness of the
selected sequence features, we employed bootstrappirgeatataset comprising
patients with 10 or more past treatments (646 patientsedguence boostingodel
was trained for each of 1000 bootstrap replicates (withaaghent) of the original
dataset. We filtered out those sequence features with yémxy< 100, ii) impor-
tance< 100 and iii) p-value> 0.1. Here, frequency denotes the number of times
that the sequence feature was selected from a bootstragesalmportance of a
sequence feature was computed by dividing its mean weigttidyariance of its
weights computed in the bootstrap repetitions. The p-waluere computed using
a Fisher’'s exact test based on a contingency table (sequeaitee vs. therapy
outcome).

Furthermore, for computing an interaction p-value betwiéentreatment
outcome (TO) and treatment and genotype information (TH@my, we use the
likelihood ratio test. Briefly, the likelihood ratio test mpares two logistic re-
gression models: one with and the other without an intesaderm. P-values are
computed in such a way that under the null hypothesis of rieréifice, the deviance
(log-likelihood difference between the two models) folkay ?-distribution (Bickel
and Doksum, 2002).

3 Results

Table 1 shows that the classification performance decreasede increased the
minimum number of events in a treatment, even though theréifice was not sig-
nificant at a 5% level by the Wilcoxon rank-sum test after Bordni correction.
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Thus, the minimum number of events in a treatment was set ¢o 8lifcomputa-
tional experiments, since a therapy consisting of only ang fias at least 3 feature
components due to the introduction of absence indicatoc®I®& NoNRTIs and
NoNNRTIs. Of note, the performance values obtained with mimmim sequence
features size of 3 showed the least variance.

Table 1: Difference in performance (ACC and AUC) with respect to thisimum size of the
sequence feature. The parameter that controls the minenalesice feature size was varied. Per-
formance was assessed in 10-fold cross-validation on ttesefawhere patients have 10 or more
treatments (#TC> 10).

minimum sequence feature size ACC AUC

1 0.808+0.0414 (0748+0.0520
2 0.788+0.0493 0741+0.0677
3 0.786+0.0196 0741+0.0411
4 0.781+0.0368 0703+0.0961
5 0.7684+0.0497 Q700+0.1010

3.1 Comparison with other methods

Tables 2 and 3 list the prediction performance (measureding of accuracy (ACC)
and area under the ROC curve (AUC)) of various methods inntleetdifferent set-
tings. It can be observed thsgquence boostingpnstantly outperforms other clas-
sifiers. Results that exhibit a statistically significarftatience are marked wité.
Performance achieved with the binary encoding for histdriegs and mutations
was in general inferior to the integer encoding (see Tabl2sAd A3 in the Ap-
pendix). Improvements over the baseline in terms of ACC aiigegpronounced
for the predictor that performs random guesses; compart tmajority predictor
the improvements (if at all) are for all machine learning @aghes only negligi-
ble. The rightmost column of Tables 2 and 3 indicates thatlm@ar methodsge-
guence boostingnd SVM with polynomial and RBF kernels) perform better than
linear methods (logistic regression and SVM with lineamiat), which motivates
us to identify non-linear sequence features.
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Table 2: Comparison of different classification methods in terms afusacy. Results where
sequence boostingutperforms other methods with statistically significaiftedence are marked

with e.

Method #TC>10 #TC>5 #TC>1 mean
baseline (guess) 0.660 0.720 0.746 -
baseline (majority) 0.783 0.832 0.851 -
sequence boosting 0.808+0.0414  0822+0.0140 (0851+0.0046 (0827+0.0219
SVM poly. d=2) 0.768+0.0479 0811+0.0301 0.8324+-0.0188 0804+ 0.0326
SVM poly. d=3) 0.760+0.0520 0808+0.0276 0.836+-0.0136 0801+ 0.0384
SVM RBF ¢0.783+-0.0064 0824+0.0048 ¢0.847+0.0052 0818+0.0324
SVM linear Q0780+ 0.0421 0.8054+0.0203 0.7724+0.0210 Q786+0.0172
Logistic regression 0.700+0.0556 0.780+0.0302 0.8384+0.0118 0773+0.0693
mean 0758+0.0408 0806+0.0226 0825+0.0141 -

Table 3:Comparison of different classification methods in termshefarea under the ROC curve
(AUC). Results wheressequence boostingutperforms other methods with statistically significant

difference are marked wité.

Method #TC>10 #TC>5 #TC>1 mean
baseline 0.500 0.500 0.500 -
sequence boosting 0.748+0.0520 0713+0.0620 068640.0323 (07164-0.0311
SVMpoly. d=2) 0.7024+0.0863 0699+0.0444 0.653+0.0340 0685+0.0275
SVM poly. d =3) 0.684+0.0824 0711+0.0440 Q0667+0.0373 0687+0.0222
SVM RBF 072940.0107 0684+4+0.0458 0.6604+-0.0233 0681+ 0.0501
SVM linear 07314+0.0941 0670+0.0766 0.601+0.0523 0667+0.0680
Logistic regression ¢0.567+0.0673 0.616+-0.0530 06764-0.0490 06204+ 0.0546
mean 0682+0.0682 06764+0.0528 0651+0.0392 -

3.2 Comparison of different treatment information

Table 4 shows the results on the comparison of differentrtreat information. In

terms of accuracy no difference between the differentrmeat information is visi-
ble. From the AUC column, however, we can observe that aeiygk of treatment
information (i.e. only TO, only GT or only TH) failed to ranlapents correctly. For
achieving a reasonable AUC performance, it was necessaryetdhe therapy in-
formation (TH) in combination with either the therapy outw®information (TO)

or the genotypic information (GT).
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Table 4: Comparison of different features in terms of accuracy (A@@J AUC. TO (Therapy
Outcome) indicates the success/failure of a previousrtreat, GT (Genotype) indicates the pres-
ence/absence of the 108 mutations, TH (Therapy) indichgedrug compounds.

Feature set ACC AUC

TO 0.7784+0.0004 05204+0.0078
GT 0.7564+0.0016 05494 0.0059
TH 0.733+0.0001 0617+0.0039
TO + GT 07604+0.0009 0533+0.0079
TH+TO 0.759+0.0024 0752+0.0074
TH+ GT 0.776+0.0022 0756+40.0042
TH+GT+TO Q783+0.0013 07374+0.0051

Table 5:Alist of interesting sequence features. Sequence Featules upper rows are associated
with success of the current treatment. Sequence Featuteslower rows are associated with failure
of the current treatment. Bold font indicates features ftbencurrent regimen. Interaction p-values
(fifth column) were only computed for sequence features c@simg successr failure.

importance frequency p-value sequence feature {TH, GT} x TO
293 117 3.47e-06 {d4T A NFV A success 1.33e-3
290 128 3.47e-05 {LPV A RTVb A success 0.10
163 415 6.75e-02 {3TC A DRV A NONNRTIs} -
161 150 1.83e-02 {3TC A RTVb A DRV} -
-128 231 1.89e-08 {RT210WA RT215Y A failure} 5.36e-4
-193 402 2.64e-06 {d4T A NFV A failure} 0.01
-209 411 3.61e-09 {LPV A RTVb A failure} 2.10e-4
-278 374 8.75e-05 {AZT A NoNNRTIsA NoPls} -
— {ddI A NoNNRTIsA NoPIs}
3.3 Identifying discriminative sequence features

In total we obtained 8215 unique sequence features from@@@ hootstrap repli-
cates. After filtering, however, only 171 sequence feattegasained (listed in Ta-
ble A4 in the Appendix). Table 5 depicts the subset of all oeced sequence
features that are discussed in the next section. Sequeatteds in bold font de-
note the inclusion of treatment information from the cutrdrerapy, i.e. the one
whose response has to be inferred. Sequence featureschatardrugs from the
current therapy are especially interesting, since theooogcof a therapy is a direct
response to the drugs in the prescribed regimen. It is litedy the past treatment
has an effect on the current treatment. The leftmost columws the importance
of the variables, the second column the frequency of theesespufeatures in the
1000 bootstrap repetitions, and the third column shows thalye computed by a
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Fisher's exact test. The fourth column shows the obtaingdesece features. The
rightmost column shows the interaction p-values betweertérapy and genotype
information (TH and GT) and the therapy outcome informat{®@®) calculated
by a likelihood ratio test. Of note, in many of the sequen@uies in which TH
and GT appear together with TO in the same treatment, interap-values were
smaller than the 5% significance threshold.

4 Discussion

The comparison with other methods showed Heafuence boostirerhieved supe-
rior performance compared to both, logistic regression@vilfls (with linear and
non-linear kernels). Furthermore, focusing on the meafopeance of the three
settings, we can observe that the mean accuracy increasessatect patients with
fewer treatment changes. This is simply due to the fact tha¢pts, who are in an
early stage of the disease, can be treated with a higherssucate. This fact is also
reflected by the success rate (baseline and guess) in tleaddwi@sets and visualized
in Figure 1. Thus, for the remaining two computational ekpents, we focused
on the more challenging setting: predicting the treatmettames of patients who
have experienced many treatment changes (#TID).

When comparing different treatment information, it tureed that for achiev-
ing optimal performance short-term therapy outcome (TQ)tbde provided either
with genotypic information (GT) or therapy information (J.Hnterestingly, the
combination TH+TO performed as well as the combination TH+This suggests
that information on the therapy history (TH) is dependenth@previous treatment
outcomes or the mutations in past and present genotypeslikely that interac-
tions between these treatment information are crucialfemperformance. Further
evidence for this hypothesis is provided by analysis of it sequence features.
More precisely, the observed small interaction p-valueéséen treatment outcome
and remaining therapy information (TH and GT) may explamgharp increase of
the classifier performance when TH is combined with TO or Gi.é¢xample, the
sequence featurgd4T A NFV A success with the interaction p-value 1.3310°3
and importance 293 suggests that the usage of drug d4T wihilNthe past itself
is not predictive. However, once this treatment has expeeé a short-term success
in the past, then this indicates a high probability of a sesfté current treatment.
Such interactions are investigated in more detail in thiewohg.

4.1 Interpretation of sequence features

The sequence boostingiethod generates a linear classifier using non-linear fea-
tures. This facilitates interpretation of features andvigtes an understanding of
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how the classifier works. In this section we closely look atititeresting sequence
features listed in Table 5.

Sequence boostiridentified usage of DRV (darunavir) in the current regi-
men (indicated by bold font) as a supporting factor for a easful regimen
({STCADRVANONNRTIs},{RTVb ADRVANONNRTIs}). In fact, DRV has been
recently approved by the US Food and Drug AdministrationA}Bnd is recom-
mended for treating heavily treatment-experienced peti€dombination therapies
using DRV are among the most potent regimens currently @vail A sequence
feature that is frequently selected and linked to treatrfeghire comprises muta-
tions RT210W and RT215Y in one of the available patient’s ajgpes
{RT210WART215YAfailure}. These two mutations are thymidine analog muta-
tions and confer resistance against all NRTIs. Since NRiEpart of almost every
combination therapy the presence of these mutations styibmits the effective-
ness of the current regimen. An example for a sequence é&atpresenting a
treatment switch i$AZT ANONNRTIsANOPIs} —{ddIANONNRTIsANoPIs}. This
sequence feature is related to failure of the current reg@sendicated by the nega-
tive importance value. A switch from an NRTI-only regimerataother NRTI-only
regimen was only common in the pre-HAART area. Thereforis,sbquence fea-
ture is associated with patients that had a high number atitrent switches (#TC)
and are therefore less likely to be successfully treated.

Sequence boostingannot only recover well-known facts. A large number
of important sequence features include the short-terntniexat outcome of pre-
vious regimens. The fact that response to a previous regaffeots the current
regimen is not obvious at first. However, if a patient faileaggimen comprising a
potent drug (e.g. LPV) after only a short time, then thereensrough mutations in
the predominant viral variant or viral reservoirs to cawskife of the drug. In con-
trast, if the treatment was successful, then the patiemtis did not acquire enough
resistance mutations to impair the drug (yet). As an exampleompared the resis-
tance mutations in patients that have the sequence fegtt¢A\RTVbAsuccesy
(73 patients) with patients with the sequence feafrBVARTVbAfailure} (66
patients). Protease mutations were more prevalent irfaih@e group than in
the succesgroup. The observed enrichment is significant according paieed
Wilcoxon rank-sum test on frequencies of single mutatipagslue=4.4%1010).
Moreover, LPV associated resistance mutations (Johnsah, &008) are signif-
icantly more enriched than other protease mutations (pewd.01<10 3 using a
one-sided Wilcoxon rank sum test). Figure 5 shows the cporeding detailed his-
togram of frequencies for all mutations.
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Figure 5: Mutation frequencies in the most recent genotype afteratiies including
{d4TANFV}(left) or {LPVARTVb}(right). (left) Patients that experience a treatment faiin gen-
eral had protease mutations that confer resistance agaamst Pls including NFV. Interestingly, in
patients that were successfully treated with NFV, the nmnadRO30N (highlighted in a box) was
enriched. This mutation confers high-level resistancg aghinst NFV, and it can therefore be ex-
pected to have developed during the course of the succéssditrhent. The same holds true for the
NFV related mutations PRO771 and PRO93L. (right) Amongeyes who have experienced a treat-
ment with boosted LPV, protease mutations (highlightedbox) were more prevalentin thiailure
group than in thesuccesgroup. This explains the higher risk of failing the recerttment for the
failure group, since resistance mutations to Pls have bleeady stored in the reservoir during or
before the failure of the past treatment with boosted LPV.
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Another example of this phenomenon is provided by patiems were
treated in the past with d4T and NFV and either had a sucde$sfiB3)
{d4TANFVAsucces}or failing (n=35) therapy{ d4TANFV Afailure}. Patients that
experience a treatment failure, in general, had proteasatimis that confer resis-
tance against many Pls including NFV. Interestingly, ingras that were success-
fully treated with NFV, the mutation PRO30N was enrichedisThutation confers
high-level resistance only against NFV, and it can theeels expected to have de-
veloped during the course of the successful treatment. dine $iolds for mutations
PR771 and PR93L, which are mainly associated with NFV rasist.

The application okequence boostirtg the problem revealed that previous
exposure to a drug is not the crucial information for pradgtresponse to a new
regimen. It is more important to know whether drugs were pém successful
or failing past regimen to draw conclusions about drug tasie especially in the
absence of genotypic information.

5 Conclusion

Sequence boostingpmbines an optimization technique with a sequence mining
method. In contrast to SVMs with non-linear kernels, theegated models are
interpretable, which enables clinicians to reason abaubtitained discriminative
sequence features. In order to improve confidence in thsifita%s decision it is
valuable to open the “black box” and analyze on what evid¢heelassifier's de-
cision is based. In our computational experiments we fohatigequence features
based on information on the treatment history perform wabeeially for patients
with many treatment changes. By studying the significancetefactions, our
approach revealed that information on past treatmentsgaith their short term
outcome is as valuable as the treatment information pairgdgenotypic informa-
tion. The successful results on a large HIV data encouragés apply the same
tool to a broader range of clinical time series problems.
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Appendix

Table Al: Overview of considered treatment information. “Mutatidnslumn shows the list of
mutations used in this work. In the “Drugs” column, the drirgshe same group share the same
mode of action against the same molecular target. Drug grave Protein Inhibitors (PIs), Nu-
cleotide Reverse Transcriptase Inhibitors (NRTIs), Narclotide Reverse Transcriptase Inhibitors

(NNRTIs), and Fusion Inhibitors (FIs).

Mutations Drugs

Treatment Outcome

- Reverse transcriptase mutations -NRTIs

41L, 62V, 65R, 67N, 69i, 70E, 70R, 74V, Lamivudine (3TC), Abair (ABC),

751, 77L, 1001, 103N, 106A,106M, 108I, Zidovudine (AZT)g8tidine (d4T),
115F, 116Y, 151M, 181C, 1811, 1841, 184V,  Zalcitabine (ddidanosine (ddl),
188C, 188H, 188L, 190A, 190S, 210W, Tenofovir (TDF), Enitabine (FTC)
215F, 215Y, 219E, 219Q, 225H, 236L

-NNRTIs
- Protease mutations Delavirdine (DLV), Efavirenz (EFV),

Nevirapine (NVP) Etravirine (TMC125)

10C, 10F, 101, 10R, 10V, 111, 13V, 16E,

201, 20M, 20R, 20T, 20V, 241, 30N, 32, - Pls

33F, 331, 33V, 34Q, 35G, 361, 36L, 36V,

43T, 461, 46L, 47A, 47V, 48V, 50L, 50V,  Amprenavir (APV), Atanavir (ATV),
53L, 53Y, 54A, 54L, 54M, 54S, 54T, 54V, Indinavir (IDV) Lopir (LPV),
58E, 60E, 62V, 63P, 64L, 64M, 64V, 69K,  Nelfinavir (NFV), Ritvir (RTV),
711, 71L, 71T, 71V, 73A, 73C, 73S, 73T, boosted dose Ritar@TVb),

74P, 76V, 771, 82A, 82F, 82I, 82L, 82S, Saquinavir (SQV),dmprenavir (FPV),

82T, 83D, 84V, 85V, 88D, 88S, 89V, 90M, Tipranavir (TPV), Daavir (DRV)
93L, 93M

-Fls

Enfuvirtide (T20)

- Success
If viral load drops
i) below 400 copies/ml, or
ii) two magnitude
from the treatment start.
- Failure

ndf success.

http://www.bepress.com/sagmb/vol10/iss1/art6
DOI: 10.2202/1544-6115.1604

22



Saigo et al.: Treatment History-Focused HIV Drug Response Prediction

Table A2: Comparison of different classification methods (in binamg@ding) in terms of ac-

curacy. As a feature for comparing methods, we used binatigators of drugs and mutations
in the past and present. Results wheeguence boostingutperforms with statistically significant
difference are marked wité.

Method #TC>10 #TC>5 #TC>1 mean
baseline (guess) 0.660 0.720 0.746 -
baseline (majority) 0.783 0.832 0.851 -
sequence boosting 0.808+0.0414  (0822+0.0140 0851+0.0046 (0827+0.0219
SVM poly. d=2) 0.779+0.0317 0816+ 0.0205 0.835+0.0179 0810+0.0234
SVMpoly. d=3) 0.782+0.045 0811+0.0179 «0.8384+-0.0166 0810+ 0.0265
SVM RBF ¢0.782+0.0077 08234+0.0055 0.844-+0.0047 0816+ 0.0597
SVM linear ¢0.777+£0.0375 0.802+0.0162 0.704+0.0194 07614+0.0244
Logistic regression 0.678+0.0762 0.750+0.0144 0.835+0.0144 (0754+4+0.035
mean 0760+0.0396 0800+0.0149 0811+0.0146 -

Table A3: Comparison of different classification methods (in binamgading) in terms of the
area under the ROC curve (AUC). As a feature for comparindnous, we used binary indicators
of drugs and mutations in the past and present. Results vgkgreence boostingutperforms with
statistically significant difference are marked wath

Method #TC>10 #TC>5 #TC>1 mean
baseline 0.500 0.500 0.500 -
sequence boosting ¢0.748+0.0520 0.713+0.0620 0.686+0.0323 0716+0.0311
SVM poly. d=2) 0.674+0.0709 0.665+0.0528 0.637+0.0259 0659+0.0499
SVM poly. (d=3) 0.651+0.0848 0.651+0.0595 0.642+0.0331 (0648+0.0591
SVM RBF ¢0.7044+0.0705 0.672+0.0519 0646+0.0261 0674+ 0.0495
SVM linear 00.674+0.0628 0.617+0.0668 0.555+0.0615 0615+0.0637
Logistic regression 0.484+0.1178 0.65+0.0543 0.654+0.0543 0595+ 0.0755
mean 06384-0.0814 0651+0.0571 06264-0.0402 -
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Table A4:Alist of patterns with high importance obtained by bootspiag. Patterns in the upper
rows are associated with success of the current treatmatier®s in the lower rows are associated
with failure of the current treatment. IMP stands for impoite, FREQ stands for frequency. The
last column shows the interaction p-values by likelihodibrest between the therapy feature (TH)
or genotype (GT) and the therapy outcome feature (TO). Buitlihdicates features from the current
regimen. Interaction p-values (fifth column) were only cartgul for patterns comprisirgucces®r
failure.

IMP  FREQ  p-value  pattern {TH, GT} x TO

-362 133 5.16e-04 {AZT A IDV A NoNNRTIs}

-349 199 1.18e-02 {3TCA d4T A NoNNRTIs}

-339 134 7.60e-02 {AZT A NoNNRTIsA NoPIs} — {AZT A ddl A NoNNRTIsA NoPls}

-325 159 8.59e-04 {ddl A NoNNRTIsA NoPls} — {AZT A ddl A NONNRTIs}

305 189  9.61e-03 {AZT A NoNNRTIsA NoPIs} — {AZT A NoNNRTIsA NoPIs} -

-303 194 4.21e-03 {IDV A NoNNRTIsA failure} 0.62

-299 220 2.92e-02 {TDF A RTVb A NoNNRTIs} -

-288 120 1.58e-07 {TDF A ATV A NoNNRTIs}

-278 374 8.75e-05 {AZT A NoNNRTIsA NoPlIs} — {ddl A NoNNRTIsA NoPls}

-277 192 5.92e-04 {ddl A RTVb A NoNNRTIs}

-276 145 4.91e-05 {3TCA LPV A RTVb A NoNNRTIs}

-276 281  5.87e-02 {3TCA d4T A NoPlIs}

-265 326 7.18e-04 {ddl A RTVb A NONNRTIs}

-263 142 1.84e-02 {TDF A ATV A RTVb} -

-263 174 2.44e-05 {AZT A NoNNRTIsA NoPlIs} — {ddl A NoNNRTIsA NoPlIs} -
— {AZT A NoNNRTIsA NoPIs}

-262 366 2.57e-06 {3TC A NoNNRTIsA failure} 0.06

-260 116 6.87e-02 {IDV A NoNNRTIsA success — {3TC A IDV A NONNRTIs} 0.58

260 152 7.52e-04 {d4T A ddi A NoNNRTIS} — {3TC A d4T A NoNNRTIs} -

-258 158 8.27e-02 {AZT A LPV A RTVb} -

-257 158 7.50e-10 {3TCA RTVb A failure} 7.97e-5

-262 226 3.74e-03 {ddI A TDF A failure} 0.87

-252 425 1.32e-04 {ddI A NoNNRTIsA NoPIs} — {AZT A NoNNRTIsA NoPIs} -

-251 438 3.90e-06 {LPV A RTVb A NoNNRTIs} -

-248 831 2.07e-06 {ddl A NoNNRTIsA failure} 0.01

-248 118 1.23e-02 {3TC A NoNNRTIsA failure} — {LPV A RTVb A NONNRTIs} 4.15e-3

-247 504 4.90e-02 {3TCA NVP A NoPls} -

246 180  5.13e-02 {AZT A NoNNRTIsA NoPIs} — {AZT A SQV A NoNNRTIs} -

-242 581 1.67e-05 {3TCA RTVb A NoONNRTIs} -

-241 138 2.55e-05 {3TCA TDF A NoNNRTIs} — {TDF A RTVb A NoNNRTIs} -

-241 423 2.10e-02 {ABC A d4T A NoNNRTIs} -

-239 597 2.01e-05 {d4T A SQV A NoNNRTIs} -

-239 371 1.36e-05 {IDV A RTVb A NoNNRTIs} -

-235 780 1.99e-02 {ddCA NoNNRTIsA NoPlIs} -

234 184  1.78e-03 {3TCAd4TANFV} -

-231 116 6.91e-02 {AZT A NoNNRTIsA NoPlIs} — {AZT A ddl A NONNRTIs} -

-230 147 3.44e-02 {TDF AFTC ARTVb} -

230 133 4.81e-06 {AZT A ddCA NoNNRTIs} -

-227 215 3.54e-02 {3TCA ABC A failure} 0.02

227 496  1.03e-03 {3TCA ABC A NoNNRTIs} -

-225 566 1.13e-05 {d4T A RTVb A NoNNRTIs}

224 148  3.05e-03 {3TCA RTVb A NoNNRTIs} — {3TC A RTVb A NoNNRTIs}

-217 281 6.91e-03 {LPV A RTVb A NoNNRTIs} — {3TC A RTVb A NoNNRTIs}

216 153  5.40e-02 {3TCA AZT A NoPls} — {3TC A RTVb A NoNNRTIs} -

-216 123 2.13e-06 {d4T A NoNNRTIsA failure} — {LPV A RTVb A NONNRTIs} 0.01

214 152 6.57e-02 {3TCA ddl A NoNNRTIs} — {3TC A RTVb A NoNNRTIs} -
-214 288 9.09e-11 {RTVb A NoNNRTIs A failure} 1.24e-5
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Table A4, continued.

.. Treatment History-Focused HIV Drug Response Prediction

IMP FREQ p-value pattern {TH, GT} x TO
-212 101 6.09e-03 {ABC A d4T A NONNRTIs A NoPls} -
-211 277 1.36e-02 {AZT A NoNNRTIsA NoPIs} — {3TC A d4T A NoPlIs} -
-210 121 4.45e-03 {ddl A TDF A RTVb} -
-209 411 3.61e-09 {LPV A RTVb A failure} 2.10e-4
-208 697 3.91e-03 {AZT A NoNNRTIsA NoPIs} — {AZT A NoNNRTIsA NoPls} -

— {3TC A d4T A NONNRTIs}
-206 581 4.73e-04 {3TCA AZT A failure} 0.12
-203 184 6.96e-06 {ddl A RTVb A NONNRTIsA failure} 0.36
-199 101 1.22e-02 {d4T A RTV A NoNNRTIs} -
-194 502  7.49e-07 {3TCA RTVbA NoNNRTIs} — {TDF A RTVb A NoNNRTIs} -
-193 234 581e-06 {AZT A NoNNRTIsA NoPls} — {3TC A d4T A NoNNRTIs} -
-193 402 2.64e-06 {d4T A NFV A failure} 0.01
-193 188 1.03e-02 {3TCA d4T A NONNRTIS} — {d4T A RTV A SQV} -
-193 124 7.32e-13 {d4T A NVP A NFV} -
-192 246 9.59e-07 {3TCA NFV A NoNNRTIs} — {3TC A ABC A NoNNRTIs} -
-192 126 2.95e-04 {3TCA NoPIsA RT67N} -
-191 104 4.79e-08 {PROG63PA RT67NA RT70R} -
-186 368  2.96e-02 {ddl A NONNRTIsA NoPIs} — {ddCA NoNNRTIsA NoPlIs} -
-185 135 5.07e-02 {TDF A SQV A NoNNRTIs} -
-185 172 1.31e-03 {3TCA SQV A NoNNRTIs} — {d4T A NoNNRTIs A failure} 0.47
-185 175 3.93e-04 {d4T A LPV A NoNNRTIs} -
-180 180 1.15e-02 {AZT A RTVb A NoNNRTIs} — {AZT A RTVb A NoNNRTIs} -
-176 176 1.62e-03 {SQV A NoNNRTIsA failure} — {d4T A SQV A NoNNRTIs} 0.04
-175 125  1.57e-02 {3TCA IDV A NoNNRTIs} — {d4T A SQV A NoNNRTIs} -
-174 179 3.58e-02 {RTVb A PRO63PA RT67N} -
-174 273 3.14e-04 {AZT A NoNNRTIsA NoPIs} — {3TC A SQV A NoNNRTIs} -
-173 109 1.46e-10 {d4T A ddI A RTVb} — {d4T A RTVb A NoNNRTISs} -
-172 127 1.12e-02 {d4T A SQV A NoNNRTIs} — {d4T A NoNNRTIs A failure} 0.13
-172 218 1.04e-02 {TDF A ATV A failure} 4.90e-5
-171 166 3.80e-05 {d4T A NoNNRTIsA failure} — {d4T A SQV A NoNNRTIs} -
-171 117 3.98e-05 {ddl A APV A NONNRTIs} -
-170 145 2.51e-04 {3TCA AZT A PRO13V} -
-166 174 9.56e-05 {d4T A NoNNRTIsA PRO13V} -
-166 277  2.12e-12 {3TCARTVbAFPV} -
-165 107 1.34e-05 {PRO10IA PRO63PA RT70R} -
-164 183 2.24e-05 {RTVb A FPV A NONNRTIs} -
-162 129 2.44e-07 {3TCA RT215Y A failure} 0.02
-160 278 4.86e-07 {APV A RTVb A NONNRTIs} -
-158 360 3.54e-04 {ABC A d4T A failure} 0.01
-155 207  7.13e-08 {RTVbA SQV A NoNNRTIs} — {d4T A RTVb A NoNNRTIs} -
-148 340 5.47e-05 {d4T A ddl A NONNRTIs} — {d4T A SQV A NONNRTIs} -
-147 112 1.87e-02 {AZT A NoNNRTIsA NoPIs} — {ddl A NONNRTIsA NoPIs} -

— {ddCA NoNNRTIsA NoPlIs}
-139 124 3.01e-03 {3TCA PRO20RA PRO361} -
-133 101 2.71e-09 {d4T A EFV A RTVb} — {d4T A LPV A NONNRTIs} -
-132 119 4.72e-07 {PROG63PA RT184V A RT215Y} -
-128 231 1.89e-08 {RT210WA RT215Y A failure} 5.36e-4
-118 102 1.74e-04 {d4T A ddI A NONNRTIs} -
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Table A4, continued.

IMP  FREQ  p-value pattern {TH, GT} x TO

152 179  6.47e-06 {3TCA d4T A NONNRTIS} — {RTVb A NoNNRTIs A failure} 0.43
161 150  1.83e-02 {3TC ARTVb A DRV} -
163 415  6.75e-02 {3TC A DRV A NoNNRTIs} -
168 111  2.40e-02 {3TCA NoNNRTIsA NoPls} -
171 455  6.96e-03 {3TCA d4T A NoNNRTIs} — {ddI A RTVb A NONNRTIs} -

177 304 3.71e-08 {3TC A NoNNRTIsA failure} — {ddl A NONNRTIs A failure} 0.64
183 268 5.76e-04 {NONNRTIsA PRO93LA RT184V} -
184 134 9.80e-02 {RTVb A T20 A succesy 0.03
197 134  5.06e-03 {3TCAd4TANFV} — {3TCA d4T A NFV} -
204 132 1.02e-02 {TDF A RTVb A NoNNRTIs} — {RTVb A NONNRTIsA succes} 5.19e-7
208 239 1.61e-05 {d4T A RTVb A NoNNRTIs} — {d4T A RTVb A failure} 0.03

210 140  6.85e-06 {d4T A ddl A NoPIsf — {LPV A RTVb A NoNNRTIs} -
211 294 6.14e-04 {RTVb A NoNNRTIsA PRO93L} -
213 168  3.10e-11 {d4T A EFV A NoPIs} — {3TC A RTVb A NoNNRTIs} -
214 569 5.96e-02 {3TC A NoNNRTIsSA NoPlIs} — {3TCA IDV A NONNRTIs} -
214 218 1.84e-07 {3TCA AZT A NoPIs} — {3TCA IDV A NoNNRTIs} -
214 250 3.87e-03 {TDF A RTVb A NoNNRTIs A succesy 3.38e-3
215 330 8.33e-02 {LPV A RTVb A NoNNRTIs} — {3TC A NONNRTIsA NoPIs} -
216 166  2.53e-02 {d4T A ddl A NoONNRTIs} — {ddI A NONNRTIs A NoPls} -
217 117 3.96e-04 {AZT A ddl A NONNRTIs} — {ddl A NONNRTIsA NoPIs} -
217 207 1.12e-03 {3TCA ddCA NoPls} -
220 415  1.53e-03 {3TCAAZT A NoNNRTIs} — {3TCA d4T A IDV} -
220 167 1.40e-02 {3TCA RTVb A NoNNRTIs} — {3TC A NONNRTIsA NoPlIs} -

220 243 3.75e-04 {ddl A EFV A succesy 0.09
224 214 5.92e-07 {NoNNRTIsA PRO63PA PRO93L} -
226 842 9.17e-05 {3TC A NoPIsA succesy 1.61e-6
226 386 1.17e-06 {ddl A NoNNRTISA succesy 0.05
226 102  3.05e-02 {3TCA d4T A NoNNRTIs} — {d4T A RTVb A NoNNRTIs} -
229 342 5.87e-05 {d4T A NVP A succesy 1.48e-4

230 264 3.32e-02 {3TCA ddI A NoNNRTIs} — {3TC A ddI A NONNRTIs} -
230 168  3.94e-04 {d4T A NVP A NoPls} -
231 334 4.16e-02 {AZT A NoNNRTIsA NoPls} — {AZT A IDV A NONNRTIs} -
233 250 3.72e-02 {ddl A RTVb A NoNNRTIs} — {RTVb A NoNNRTIs A succes} 0.01
233 491 5.08e-04 {3TCA RTVb A succesh 0.03
234 240  3.54e-08 {d4T A ddl A NoPIsf — {3TC A RTVb A NoNNRTIs} -
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Table A4, continued.

.. Treatment History-Focused HIV Drug Response Prediction

IMP  FREQ  p-value pattern {TH, GT} x TO
237 287  7.17e-04 {ABC A ddi A NoPIs} .
237 223 7.69e-02 {ABC A TDF A NoNNRTIs} -
239 109 6.51e-02 {3TCA ABC A NoPlIs} -
240 155  1.06e-06 {3TCA ddl A NoNNRTIs} — {3TC A TDF A NoNNRTIs} -
241 189 9.75e-02 {d4T A NFV A NoNNRTIs} — {d4T A NFV A NOoNNRTIs} -
242 149  1.21e-03 {ddI A NoNNRTIsA failure} — {ddI A NONNRTIs A NoPls} 0.04
242 106 7.71e-06 {3TCA LPV A NoNNRTIs} — {3TC A RTVb A NoNNRTIs} -
243 137 1.08e-06 {EFV A NoPIsA succesy 0.01
244 224 1.18e-03 {3TCA RTVb A NoNNRTIs} — {3TC A TDF A NoONNRTIs} -
244 102 1.73e-03 {AZT A NoNNRTIsA failure} — {3TCA ddl A NoONNRTIs} 0.01
246 116 7.30e-02 {3TCA AZT A TDF A NoNNRTIs} -
246 159 3.11e-02 {AZT A NoNNRTIsA NoPlst — {AZT A NoNNRTIsA NoPls} -

— {3TCA IDV A NoNNRTIs}
246 132 3.00e-02 {3TC A ddCA NoNNRTIs} -
247 104  9.23e-03 {RTVb A NoNNRTIsA success — {LPV A RTVb A NoNNRTIs} 0.02
248 896 3.09e-11 {d4T A NoNNRTIs A succesy 8.15e-5
248 195 2.49e-02 {d4T A EFV A succesp 0.09
254 170 2.42e-02 {ABC A AZT A NoNNRTIs} -
256 373 3.60e-04 {NVP A NoPIsA succesy 0.01
256 360  1.65e-02 {ABC A EFV A NoPlst -
258 115 1.04e-03 {ABC A AZT A NoPls} -
259 141  5.45e-02 {3TCA d4T A NoNNRTIs} — {3TC A d4T A NoNNRTIs} -

— {3TC A d4T A NONNRTIs}
261 584 8.62e-04 {d4T A ddl A succesy 0.01
261 311 1.49e-04 {3TCA ABC A NoNNRTIs} — {3TC A ABC A NoPls} -
262 102 7.43e-02 {ddl A NoPIsA succesy 0.01
267 174  4.33e-02 {AZT Addl A NoNNRTIs} — {AZT A ddI A NONNRTIs} -
267 160 4.05e-05 {ddl A NONNRTIsA NoPIs} — {AZT A NoNNRTIsA NoPIs} -

— {AZT A NoNNRTIs A NoPIs}
268 528 7.11e-02 {3TC A ddl A NONNRTIs} -
272 143 7.26e-02 {AZT A NoNNRTIsA NoPIs} — {3TC A NoNNRTIsA NoPls} -
273 192 2.65e-03 {d4T A ddl A NoNNRTIs]} — {d4T A ddI A NoPlIs} -
274 277  2.45e-02 {3TCA d4T A NONNRTIs} — {3TC A d4T A NFV} -
275 184 9.68e-06 {ddl A NFV A succesp 1.21e-4
284 497 1.76e-04 {IDV A NoNNRTISA succes} 1.53e-3
287 364 7.60e-04 {ABC A EFV A succes} 0.21
290 128 3.47e-05 {LPV A RTVb A succesp 0.10
293 117 3.47e-06 {d4T A NFV A succesp 1.33e-3
298 163 7.93e-06 {d4T A NoPIsA succesy 4.95e-21
299 109 2.70e-03 {ddl A NoNNRTIsA NoPlIs} -
300 167 4.64e-02 {ddl A NONNRTIsA PRO63R -
302 268 1.27e-02 {3TCA ddl A NoPlIs} -
304 172 5.96e-02 {3TC A ABC A AZT A NoNNRTIs} -
308 101 7.72e-05 {AZT A ddl A NoPlIs} — {ddl A NONNRTIsA NoPIs} -
310 108  3.61e-03 {3TCA NoNNRTIsA success — {3TCA AZT A NoPls} 0.01
311 183 7.08e-05 {ddl A NoNNRTIsA NoPIs} — {3TC A NoNNRTIsA NoPls} -
348 132 2.35e-04 {3TCAABC AAZT} — {ABC A AZT A NoPIs} -
374 155 2.52e-10 {NFV A NoNNRTIsA succes} 7.28e-4
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