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Learning from Past Treatments and Their
Outcome Improves Prediction of In Vivo

Response to Anti-HIV Therapy∗

Hiroto Saigo, Andre Altmann, Jasmina Bogojeska, Fabian Müller, Sebastian
Nowozin, and Thomas Lengauer

Abstract

Infections with the human immunodeficiency virus type 1 (HIV-1) are treated with combina-
tions of drugs. Unfortunately, HIV responds to the treatment by developing resistance mutations.
Consequently, the genome of the viral target proteins is sequenced and inspected for resistance
mutations as part of routine diagnostic procedures for ensuring an effective treatment. For pre-
dicting response to a combination therapy, currently available computer-based methods rely on
the genotype of the virus and the composition of the regimen as input. However, no available tool
takes full advantage of the knowledge about the order of and the response to previously prescribed
regimens. The resulting high-dimensional feature space makes existing methods difficult to apply
in a straightforward fashion. The machine learning system proposed in this work, sequence boost-
ing, is tailored to exploiting such high-dimensional information, i.e. the extraction of longitudinal
features, by utilizing the recent advancements in data mining and boosting.

When applied to predicting the latest treatment outcome for 3,759 treatment-experienced patients
from the EuResist integrated database, sequence boosting achieved superior performance com-
pared to SVMs with RBF kernels. Moreover, sequence boosting allows an easy access to the
discriminative treatment information.

Analysis of feature importance values provided by our model confirmed known facts regarding
HIV treatment. For instance, application of potent and recently licensed drugs was beneficial for
patients, and, conversely, the patient group that was subject to NRTI mono-therapies in the past
had poor treatment perspectives today. Furthermore, our model revealed novel biological insights.
More precisely, the combination of previously used drugs with their in vivo response is more in-

∗Hiroto Saigo and Andre Altmann are joint first authors. Please send correspondence to Hi-
roto Saigo, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, Japan; email:
hiroto@mpi-inf.mpg.de, or Andre Altmann, Max Planck Institute of Psychiatry, 80804 Munich,
Germany; email altmann@mpi-inf.de. The authors thank the EuResist project (contract num-
ber EU-STREP IST-2004-027173) and the EuResist coordinator Maurizio Zazzi for providing the
data. The authors also thank Rolf Kaiser for comments on the medical interpretation.



formative than the information of previously used drugs alone. Using this information improves
the performance of systems for predicting therapy outcome.

KEYWORDS: data mining, discriminative sequence features, boosting, HIV, clinical, optimiza-
tion



1 Introduction

The human immunodeficiency virus (HIV) was discovered in theearly 80’s (Barré-
Sinoussi et al., 1983). Until now, it has claimed the lives ofmore than 25 million
people, and currently more than 33 million people are reported to be infected with
HIV1. HIV is a retrovirus, i.e. its genome is coded in RNA, which first has to be
reversely transcribed to DNA for exploiting the replication machinery of the host
cell (Fields et al., 2007). The process of reverse transcription is carried out by the
viral protein reverse transcriptase (RT). Current HIV therapy is limited to suppress-
ing the viral load (i.e. number of copies of viral RNA in one mlof blood serum)
and therefore delaying disease progression to AIDS and death. The high mutation
rate of HIV (Gao et al., 2004) is due to RT lacking a proof-reading mechanism.
This poses a challenge to antiretroviral treatment, since it is only a matter of time
until mutations are generated that allow the virus to replicate in the presence of a
drug. Due to the replicative advantage, these drug resistance mutations are selected
evolutionarily and cause the failure of the ongoing regimen. In order to delay resis-
tance development, modern anti HIV therapies comprise multiple drugs attacking
the virus at multiple stages of the replication cycle (Clavel and Hance, 2004). Fu-
sion inhibitors (FIs) prevent the entry of HIV into its host cells. Nucleoside and
non-nucleoside reverse transcriptase inhibitors (abbreviated NRTIs and NNRTIs,
respectively) inhibit the viral RT. Protease inhibitors (PIs) bind to the active site of
the viral protease that cleaves precursor proteins into functionally active units (for
further details see for instance Clavel and Hance (2004)).

Eventually also these highly active antiretroviral therapies (HAARTs) fail
and the treating clinician has to find a new combination of active antiretroviral
drugs. This task is complicated by the phenomenon of cross-resistance, which
means that resistance mutations selected by one drug also confer resistance against
drugs with same mode of action targeting the same viral protein. To arrive at a ben-
eficial selection of drugs to administer to the patient, the sequence of the genetic
regions coding for the viral target proteins is obtained from the patient’s virus. This
sequence is then inspected for resistance mutations. This process is state-of-the-art,
but one major obstacle remains: as soon as drug resistance mutations do no longer
present a replicative advantage, they may disappear from the currently predominant
viral variant. This can happen if a treatment is altered or paused. Unfortunately,
the patient harbors previous viral variants in the form of proviral DNA in several
infected tissues (Fields et al., 2007). This constitutes a memory of resistance muta-
tions provoked by previous treatments. As a consequence, recycling of drugs typi-

1http://www.unaids.org/en/KnowledgeCentre/HIVData/GlobalReport/2008/2008_

Global_report.asp
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cally leads to a rapid reselection of previously existing resistance mutations, which
are not prevalent in the predominant viral variant in the patient’s blood and conse-
quently are not detectable by conventional sequencing methods. For avoiding such a
short-term viral rebound, the treating clinician considers the patient’s treatment his-
tory, i.e. the previously administered drugs, in addition to the viral genotype when
selecting a new regimen. Treatment history has long been recognized as clinically
relevant (Bratt et al., 1998). More recently it was shown that taking all available
(past and present) genotypes of the patient into account improves the prediction of
treatment response in heavily pretreated patients (Zaccarelli et al., 2009)

For assisting the interpretation of genotypic sequences statistical learning
methods were used to assess resistance against single drugs(Beerenwinkel et al.,
2002). This concept was recently extended to predictin vivo response to com-
bination treatments (Altmann et al., 2007, 2009; Larder, 2007). However, so far
computer-based methods make use of the patient’s treatmenthistory only by us-
ing binary indicators of previous exposure to a drug as additional features (Bickel
et al., 2008; Larder, 2007; Rosen-Zvi et al., 2008). While this representation per-
fectly summarizes previous drug applications, it may miss important and informa-
tive cause-effect relationships, such as: the drug efavirenz (EFV) selects mutation
RT103N, which leads to the administration of a new drug combination including
lopinavir (LPV), but not any drug from the same class as EFV (see Figure 2 for
an example). Here, the notation RT103N indicates that the wild-type amino acid
at position 103 in the RT was replaced with Asparagine. This RT mutation alone
is sufficient to confer complete resistance to the NNRTIs EFVand NVP (Antinori
et al., 2002). Therefore, the failure of the latest NNRTI containing regimen may
be attributed to the occurrence of mutation RT103N as response to the previous
use of EFV. It is worth noting, however, that in clinical practice viral genotypes
are not always measured, and consequently important mutations such as RT103N
go unnoticed. In that case the treating clinician has to consider the possibility of
accumulation of NNRTI resistance mutations from the previously administered reg-
imens.

A further indicator for accumulated resistance mutations is the number of
treatment changes (#TC), which is defined as the number of times the patient’s
treatment has been changed or interrupted. A higher #TC increases the risk of
the patient experiencing a treatment failure (see Figure 1), pointing towards the
increasing difficulty of treating patients that experienced many treatment changes.
This is a direct consequence of the accumulated mutations inthe currently domi-
nant viral variant and in the viral reservoirs. Informationon the treatment history is
useful for predicting response to antiretroviral therapy in treatment-experienced pa-
tients, since mutations in the viral reservoirs are not detectable by standard genotyp-
ing. Therefore, the validation of our method, calledsequence boostingfocuses on
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Figure 1:Ratio of patients with long treatment lines. The number of treatment changes is defined
as the number of times the patient’s treatment has been changed or interrupted. The figure depicts
the increase of the treatment failure rate as the number of treatment changes grows, pointing to the
increasing difficulty of treating patients that experienced many treatment changes.

treatment-experienced patients. In the following we present further related work. In
Section 2 we introduce our source for HIV treatment data, theEuResist Integrated
database. Furthermore, we explain how patient data obtained from the database is
converted intosequence featuresthat can be used by our learning methodsequence
boosting. Briefly, sequence boostingclassifies the response to the current therapy
based on all events in the patient’s treatment record (viralgenotypes, previously ad-
ministered therapies, and response to these therapies) under consideration of their
order. In essence, the resulting method is a linear classifier using non-linear fea-
tures. In Sections 3 and 4 we present the results and discussion, respectively, of our
computational experiments. And finally we conclude with Section 5.

1.1 Related work

The prediction ofin vivo response to antiretroviral therapy has been approached in
previous works. For instance, Rosen-Zvi et al. (2008) used logistic regression mod-
els with different sets of features for predicting the outcome of antiretroviral combi-
nation therapies. Among these features were up to three-wayinteraction terms be-
tween indicator variables for drugs, previously administered drugs, and mutations.
Thesequence boostingmethod presented here, considered up toN-way interaction
features, whereN is the number of treatment events in the longest treatment record
in the training data. Other approaches, such as Bayesian networks (Deforche et al.,
2006) or transfer learning (Bickel et al., 2008) were applied to the same treatment
outcome prediction problem, but none of them employed such alarge number of
features.

Although the goal is different, a closely related and well-studied topic is
the prediction of the phenotypic drug resistance. This topic is similar in a sense
that it uses genotypic information as features and the target is the prediction of
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binary or real-valued response values. Various statistical learning methods have
been applied in this area, including linear regression (Rabinowitz et al., 2006; Rhee
et al., 2006; Saigo et al., 2007), decision trees (Beerenwinkel et al., 2002), support
vector machines (SVMs) (Beerenwinkel et al., 2003; Sing et al., 2005; Sing and
Beerenwinkel, 2007), artificial neural networks (Wang and Larder, 2003; Larder,
2007), bayesian networks (Deforche et al., 2008) and Markovmodels (Foulkes and
DeGruttola, 2002, 2003).

2 Materials and Methods

2.1 The EuResist integrated database

The EuResist integrated database (release November 2007),which is the source of
data for the computational experiments, comprises data from four different coun-
tries: Germany, Italy, Luxembourg, and Sweden. The database contains 61,831
different treatments from 18,467 patients collected in theyears 1987 through 2007.
For each patient the viral load (VL) measurements, therapies (sets of administered
drugs), and genotypes are recorded.

For instance, Figure 2 shows an excerpt of a patient’s treatment record, cov-
ering the last two treatment switches. This patient has started with
FTC+TDF+LPV+RTVb and was switched to 3TC+AZT+EFV after an increase in
viral load. Viral suppression was not maintained for a long period of time, there-
after FTC+TDF+NVP was selected. The viral load did not decrease in response
to this treatment and the therapy was therefore considered atreatment failure. At
the end of the second treatment term, the mutation 103N was observed in the RT
coding region.

By definition, baseline VL and genotype are only assigned to atreatment,
if they were obtained at most 90 days before treatment start.A follow-up VL is at-
tributed to a treatment only if it is available in a specific time-interval (here: between
28 and 84 days) after onset of the therapy. Following the guidelines of the EuResist
consortium (Rosen-Zvi et al., 2008), treatment response isdichotomized to success
and failure, with a treatment success defined by a drop of the follow-up VL either
below the limit of detection, i.e. 400 copies/ml, or by two orders of magnitude
compared to the baseline VL. If no follow-up VL is available in that time frame, the
corresponding treatment receives no label. Of note, the time frame of one to three
months for the follow-up VL in the definition is considered a short-term response,
as opposed to medium-term response of about 6 months and long-term response
with even more distant end-points.
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Figure 2: Example of a treatment record (top) and its sequence representation (bottom). (top)
The chart shows the treatment record of a patient over the last two treatment switches. This patient
has started treatment with FTC+TDF+LPV+RTVb, and was switched to 3TC+AZT+EFV after an
increase in viral load. Suppression of viral load by the second regimen did not last long, there-
after FTC+TDF+NVP was selected. Here, the viral load did notdecrease and thus the regimen is
considered a treatment failure. At the end of the second treatment term, the mutation 103N was ob-
served in the RT coding region (RT103N). (bottom) Sequence representation of the treatment history
corresponding to the chart above.

2.2 Sequence representation of treatment history

The treatment records stored in the EuResist Integrated database have to be con-
verted for making it a suitable input forsequence boosting. Each record in our
training data takes the form(xi ,yi) wherexi ∈ {0,1}T×F andyi ∈ {0,1} denote the
treatment sequence of thei-th patient and the outcome of the latest therapy, respec-
tively. We use the definition of treatment outcome as presented in the previous para-
graph.F is the largest number of treatment events in each treatment,i.e., “the num-
ber of drugs (25)” + “the number of mutations (108)” + “the outcome of the therapy
(1)” = 134. The list of all the treatment events is summarizedin the Appendix (Ta-
ble A1). T is the length of the longest treatment sequence in training data, which, in
our case, is 38. The list of 108 mutations is based on the list maintained by the Inter-
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national AIDS Society (Johnson et al., 2008). The binary vector xi is equivalently
represented as a setXi , containing all indicest and f such thatxi,t, f = 1, where
{t|1≤ t ≤ T} and{ f |1≤ f ≤ F} are indices for the treatment and the additional
information (such as observed mutations before the onset ofthe therapy, applied
drugs and their short-time response) in each treatment, respectively. For instance,
the appearance of eventsf1 and f2 in treatmentt followed by the appearance of
eventsf3 and f4, is represented asxt, f1 ∧ xt, f2 ∧ xt+1, f3 ∧ xt+1, f4. In the following,
we represent the corresponding sequence feature as{x1∧ x2} → {x3∧ x4}, where
the→ operator means that the treatment on the right hand side follows the treat-
ment on the left hand side. This representation is a generalization of the treatment
change episodes (TCE) presented by Altmann et al. (2007). Ifdrugs, mutations,
and therapy outcome occur simultaneously in the treatment,then the order of the
events is i) the observed mutations, ii) prescribed drugs, followed by iii) therapy
outcome. This ordering originates from the observation that a resistance induced
treatment change is usually preceded by the sequencing of the viral population in
the patient. Likewise, the therapy outcome has to be preceded by a change in the
drug combination.

Example 1 A sequence {FTC∧TDF∧LPV∧RTVb}→{3TC∧AZT∧EFV} →
{RT103N∧FTC∧TDF∧NVP∧failure} represents a treatment includingFTC, TDF,
LPV andRTVb followed by the combination3TC+AZT+EFV.At the end the sec-
ond treatment, a mutationRT103N is observed andFTC+TDF+NVP is adminis-
tered, which turned out to be a treatment failure.

The termssequenceandsequence featureare formally defined as follows:

Definition 1 (Sequence). A sequence s= (s1,s2, . . .sT) is defined as an ordered
list of elements st . Each element st is a finite set of integers corresponding to the
indicators for treatment events in the t-th treatment.

Example 2 In Example 1, s1 has treatment eventsFTC, TDF, LPV, RTVb, s2 has
treatment events3TC, AZT, EFV, and s3 has treatment eventsRT103N, FTC, TDF,
NVP and failure.

Definition 2 (Sequence feature). A sequence s1 is a sequence feature of s2 if there
exists a strictly increasing element mapping such that eachelement of s1 is a subset
of its corresponding element of s2.

Example 3 {EFV}→{NVP} is a sequence feature of the sequence in Example 1,
since{}⊆{FTC, TDF, LPV, RTVb}, {EFV}⊆{3TC, AZT, EFV} and {NVP}⊆
{RT103N, FTC, TDF, NVP, failure}, where{} stands for the empty set.
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Given two sets of sequences corresponding to complete treatment records from two
groups of patients (one experiencing a treatment success inthe latest treatment and
the other a treatment failure), we want to identify sequencefeatures (treatment
change episodes) that are observed frequently in one set, but infrequently in the
other set.

2.3 Sequence boosting

Sequence boostingclassifies the response to the current therapy based on all events
in the patient’s treatment record (viral genotypes, previously administered thera-
pies, and short-term response to these therapies) under consideration of their order.
In essence, the resulting method is a linear classifier usingnon-linear features. To
this end, thesequence boostingmethod constructs a feature space progressively by
adding a sequence feature in each iteration. We follow the LPBoost (Demiriz et al.,
2002) approach in which the parameter vector is regularizedw.r.t. the L1-norm
(LASSO) resulting in most sequence features having zero weights. This is particu-
larly useful in our case, since even if the whole sequence feature space is expensive
to construct, we can disregard and skip adding the sequence features with zero-
weights to the feature space. LetX be the sequence representation of the patient’s
treatment record, andsbe an arbitrary sequence feature. We represent the presence
or absence ofs in X by an indicator functionI(X) that returns 1 ifs∈ X, and 0
otherwise. Our classifier is a linear combination of sequence features:

f (X) = sgn

(

∑
s∈S

αsIs(X)

)

(1)

wheres is an instance of the complete sequence feature spaceS derived from the
training set, andαs is the corresponding weight to be learned.
In order to illustrate the function of the indicator function further, consider follow-
ing example of a treatment history2:

X1 = {FTC∧TDF∧LPV∧RTVb}→ {3TC∧AZT∧EFV}

→ {RT103N∧FTC∧TDF∧NVP∧ failure},

and the following examples for sequence features:

s1 = {EFV∧ failure},s2 = {NVP∧ failure},s3 = {EFV}→ {NVP}.

The sequence featuress2 and s3 occur in the treatment historyX1, but s1 does
not. ThereforeIs2(X1) = Is3(X1) = 1 andIs1(X1) = 0. Unlike in the conventional

2Figure 2 illustrates derivation of the sequence representation from the actual treatment history.
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representation of features as fixed size vectors, this sequence representation allows
us to compare treatment histories of different length. Thereby we circumvent the
missing data problem. For instance, the treatment responseto a past regimen is
undoubtfully useful, but unfortunately not always measured and recorded. Figure 3
illustrates the training and evaluation procedure ofsequence boosting.

Patient 1

Patient 2

Patient 3

{FTC TDF LPV RTVb} {3TC AZT EFV} {RT103N FTC TDF NVP}

Patient 4

success

failure

success

failure

Training by sequence boosting

Prediction on patient 7:

train
data

test
data

Patient 5

success

{FTC TDF LPV RTVb} {3TC AZT NVP}

{FTC TDF EFV} {3TC AZT NVP}

{ABC d4T NVP} {FTC AZT NVP}

{FTC TDF EFV} {FTC TDF LPV RTVb}

Patient 7 failure{FTC TDF EFV} {FTC NVP TDF ABC}

Patient 6

{RT103N FTC TDF SQV RTVb} {3TC AZT EFV} {3TC AZT NVP} failure

Figure 3: Schematic figure of training and evaluation ofsequence boosting. We use patients
whose past treatment records and latest treatment outcomesare available. In this example, we have
two groups of patients whose recent treatment outcome are either failure (1,2,3) or success (4,5,6).
While the data from these six patients are used for training the system, the information on patient 7 is
reserved only for evaluation of the system. In this example,only one sequence feature EFV→ NVP
is obtained during training, since presence or absence of this feature in treatment history perfectly
discriminates one group from the other. Using this rule, thesystem predicts the recent treatment
outcome of the patient 7 as failure since this patient also has experienced the treatment of EFV
followed by NVP: EFV→NVP.

2.3.1 Problem formulation

Our objective function is the same as the one of LPBoost (Demiriz et al., 2002)
(also known as the Linear Programming Machine (Schölkopf and Smola, 2002)),
i.e. it maximizes the marginρ :
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maxα,ξ ,ρ ρ−D
n

∑
i=1

ξi , (2)

s.t. ∑
s∈S

yiαsIs(X)+ξi ≥ ρ i = 1. . .n, (3)

∑
s∈S

αs = 1, α ≥ 0, ξ ≥ 0, (4)

where we setD = 1
nν according to Demiriz et al. (2002). This problem is hard to

solve, due to the large number of sequence features and corresponding weightsα.
Therefore we consider a restricted problem on a subset of variablesα: we start
with an empty set of variables, and a new variable is added in each iteration. By the
duality of linear programming, adding a variable in the primal problem is equivalent
to adding a constraint in the dual problem. The former approach is often termed
column generation, and the latter is referred to as constraint generation, or cutting-
plane method. The dual problem of the above linear programming problem is:

minλ ,γ γ, (5)

s.t.
n

∑
i=1

yiλi Is(Xi)≤ γ s∈S , (6)

n

∑
ı=1

λi = 1, 0≤ λ ≤ D. (7)

From the dual point of view, only a subset of constraints is used to determine the
current solution, and a new constraint that most strongly violates the constraint (6)
is added to the solution set in each iteration. In our case, finding the most strongly
violated constraint (constraint generation subproblem) is equivalent to finding the
sequence features which maximizes thegain function:

g(s) =
n

∑
i=1

yiλi Is(Xi). (8)

In the following subsection, we give a branch-and-bound algorithm calledDiscrim-
inative PrefixSpanto solve this constraint generation subproblem. Thesequence
boostingalgorithm terminates if the newly obtained constraint satisfiesg(s)≤ γ̂ +ε,
whereε is a parameter for early stopping, andγ̂ is the value of the dual solution. As
soon as the dual problem is feasible by taking(λ , γ̂ + ε), then the weak duality of
linear programming tells us that the value of the primal solution γ∗ = ρ−D∑n

i=1ξi

is bounded from above byγ∗ < γ̂ +ε. This suggests that even if we were to include
all the sequence features, the value of the primal solution can be increased at most
by ε. In all the experimentsε is set to 0.01. The pseudocode ofsequence boosting
is given in Algorithm 1.
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Algorithm 1 sequence boosting
Require: X,y,ν ,ε
Ensure: α ,H
1: procedure sequence boosting
2: H(0) = /0, λ (0)

i = 1/n, level = 1
3: loop
4: s∗← Discriminative PrefixSpan(λ ,X,y)
5: if ∑n

i=1 yiλi1s∗(Xi)≤ γ + ε then
6: break ⊲ No more sequence features
7: end if
8: H← H ∪{s∗} ⊲ Update the sequence feature set
9: (λ ,α)← Solve the dual problem (5),(6),(7)

10: end loop
11: return (α)
12: end procedure

2.3.2 Searching for sequence features

A straightforward approach to finding the sequence feature which maximizes the
gain function (8) out of all possible sequence features is tofirst enumerate all se-
quence features using PrefixSpan (Pei et al., 2004), then compute the gain (8) for
each of them, and at the end take the maximum. In the PrefixSpanapproach, the
sequence features are organized in a search tree. The root node of the tree is an
empty set, and each node is extended by adding one item to the sequence of its
parent node. At each node, the frequency (number of occurrences in the dataset:
support) of the sequence feature is counted, and used for tree pruning.

In our case, instead of the frequency, the gain function is computed at each
node, since we are interested in discriminative sequence features rather than fre-
quent ones (Figure 4). This tree is traversed by one of the basic search algorithms
such as depth first search (DFS), breath first search (BFS), orthe A∗ algorithm.
Here, we used a variant ofA∗, and deepened the tree depth gradually (Nowozin
et al., 2008). This strategy makes pruning effective when there are short high-gain
sequence features.

For increasing efficacy, the size of the search tree has to be limited: suppose
that one has traversed the tree up to the node with a sequence features, and the
maximum gain found so far isgcur. If there are no sequence features among the su-
persetss′ of the featureswhich exceed the gaingcur, then one can quit the traversal
at this point and prune the downstream part of the tree. In order to judge whether
the tree can be pruned ats, we use the following theorem (Morishita, 2001; Kudo
et al., 2005):
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Patient 2

Patient 3

{FTC TDF LPV RTVb} {3TC AZT EFV} {RT103N FTC TDF NVP}

Patient 4

success(1)

failure(-1)

success(1)

failure(-1)

Finding discriminative sequence features
by branch-and-bound search

train
data

Patient 5

success(1)

{FTC TDF LPV RTVb} {3TC AZT NVP}

{FTC TDF EFV} {3TC AZT NVP}

{ABC d4T NVP} {FTC AZT NVP}

{FTC TDF EFV} {FTC TDF LPV RTVb}Patient 6

{RT103N FTC TDF SQV RTVb} {3TC AZT EFV} {3TC AZT NVP} failure(-1)

1/6

1/6

1/6

1/6

1/6

1/6

y λX

Figure 4: A treatment history in sequence representation (top) and its corresponding search tree
(bottom). In each oval of the search tree, a sequence featuresand the derivation of its corresponding
gain (g(s) = ∑6

i=1yiλi Is(Xi)) are shown. This example shows the exploration of the searchtree at the
first iteration ofsequence boostingwhere theλs are initialized as uniform values. In this case the
search tree explores sequence features which appear frequently in patients 1 to 3 (whose treatments
turned out to be a failure), but infrequently in patients 4 to6 (whose treatments turned out to be
successful), or vice versa. The most discriminative sequence feature{EFV→ NVP} is marked in
the bold oval.

Theorem 1 For any sequence feature s′ such that s⊆ s′, g(s′) < gcur, if

max

{

∑
{i|s⊆xi ,yi=0}

λi , ∑
{i|s⊆xi ,yi=1}

λi

}

< gcur. (9)

In terms of time complexitysequence boostingis NP-hard due to the NP-
hardness of its subproblem: PrefixSpan. The scalability of our method depends on
the size of the dataset and its density. If the data are dense,then the output length
of the PrefixSpan increases and the total speed decreases quickly. However, our
data representation is sparse, i.e., most of the sequence features appear much less
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frequently than the size of the datasetn. Thus intersection operations on a search
tree can efficiently prune candidates, and we do not need to search for very long
sequence features. This sparseness helps us exploring a space which at first glance
seems intractably large.

2.4 Computational experiments

The first computational experiment focused on the comparison of sequence boost-
ing with logistic regression and SVMs using linear and nonlinear kernels to investi-
gate the discriminative power of the sequence features. Since the space of sequence
features is too large to be utilized as feature vector for SVMs and logistic regression,
the patient’s treatment record has to be encoded in a different way3. In the second
experiment, we compared which one of the treatment information - therapy, geno-
type, or therapy outcome - is important for the prediction. Furthermore,sequence
boostingallows easy access to discriminative treatment information. Thus, in the
final experiment, we filtered and interpreted selected sequence features retrieved by
sequence boosting.

For improving interpretability, we encoded treatment information of the cur-
rent therapy with different integers than treatment information from past therapies.
Additionally, we used three special indicators representing the absence of all PIs,
all NRTIs, or all NNRTIs denoted as NoPIs, NoNRTIs, or NoNNRTIs, respectively.
Furthermore, it is desirable that each treatment contains more than one treatment
event, since a larger set with more treatment events such as{TDF ∧ success} is
more informative than just{success}. However, it could be disadvantageous for the
classification performance to simply set the minimum numberof events in a treat-
ment too large. The reason is that a treatment with more events are less frequent
in the training set, and can represent only smaller fractionof the data. Therefore,
in an initial experiment, we varied the parameter of the model, which controls the
minimum number of events in a treatment and observed its influence on the predic-
tion accuracy. The optimal value identified in this initial experiment was used for
all remaining experiments.

2.4.1 Comparison with other methods

In this experiment we comparesequence boostingwith SVMs and logistic regres-
sion. For SVMs and logistic regression, we provided a feature vector of fixed length

3SVMs with non-linear kernels can make use of the same amount of information. Extracting
discriminative rules from non-linear kernels, however, ischallenging. Thus, we do not pursue this
interesting direction for engineering a suitable kernel.
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that has i) binary indicators for drugs and mutations of the current treatment, ii) inte-
ger values counting the frequencies of the drugs in past treatments, iii) integers rep-
resenting the number of times a mutation was observed in previous genotypes, and
iv) three additional numerical variables, which indicate the number of successes and
failures in the past as well as the total number of treatment changes, respectively.
This feature representation extends the ones used in Bickelet al. (2008) and Rosen-
Zvi et al. (2008). Additionally, since it is a more common representation, we used
binary indicators instead of frequencies for previously used drugs and observed mu-
tations. Thus, the representation provides the same quantitative information as the
sequence features but without their order, i.e. the sequence information. SVMs
with polynomial kernels of degree 2 and 3 correspond to the interaction features in
Rosen-Zvi et al. (2008).

We prepared three datasets depending on the number of treatment changes:
i) patients with #TC≥ 10, ii) patients with #TC≥ 5, and iii) patients with #TC
≥ 1. The baseline accuracy, i.e. frequency of successful therapies of these settings
is 0.783, 0.832 and 0.851, respectively. There were 3,759 patients in total, 1,830
with #TC≥ 5 and 646 with #TC≥ 10.

For evaluation, we performed 10-fold cross-validation where, in each fold,
80% of the data were used for training, 10% were used for adjusting the regulariza-
tion parameter, and the other 10% were used solely for the performance assessment.
For SVM andsequence boosting, the regularization parameterν, which controls the
balance between overfitting and underfitting, was chosen from {0.1, 0.2,. . ., 0.6}.
For estimating the baseline performance in terms of accuracy, we employ two dif-
ferent predictors: one that performs random guesses according to the prevalence of
the classes (guess), and one that always predicts the majority class (majority). For
the former the performance is computed asx2+(1−x)2, with x being the frequency
of successful therapies. This baseline with background probabilities has previously
been employed by Baldi et al. (2000).

Performance of the classifiers is assessed in both, accuracyand area under
the receiver operating characteristics (ROC) curve (AUC).In order to test for signif-
icance of the observed improvement ofsequence boostingover the other methods,
we employed a Wilcoxon rank-sum test with a 5% significance level.

2.4.2 Comparison of different treatment information

In principle, there are three types of treatment information: genotype (GT), therapy
(TH) and therapy outcome (TO). For addressing the question which treatment in-
formation or which interactions of treatment information are most informative for
the classification, the training data were restricted to thefollowing settings: i) only
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genotype information (GT), ii) only therapy information (TH), iii) only therapy
outcome information (TO), and their two-way combinations,i.e. iv) therapy out-
come and genotype, v) therapy and therapy outcome, and vi) therapy and genotype.
We compared all of these combinations usingsequence boostingvia 10-fold cross-
validation (using the same setup as described in the previous section). In order to
ensure a fair comparison of the different treatment information with the baseline
method, i.e. predictions based on the genotype preceding the therapy, we selected a
subset of patients with a genotype attributed to the currenttreatment. After this re-
striction 446 patients remained and the corresponding baseline accuracy (frequency
of successful therapies) was 0.774.

2.4.3 Identifying discriminative sequence features

In general, the set of features selected by a given feature selection method depends
on the training set. The LASSO feature selection employed bysequence boosting
poses no exception of this fact (Zou, 2006). For ensuring therobustness of the
selected sequence features, we employed bootstrapping on the dataset comprising
patients with 10 or more past treatments (646 patients). Asequence boostingmodel
was trained for each of 1000 bootstrap replicates (with replacement) of the original
dataset. We filtered out those sequence features with i) frequency≤ 100, ii) impor-
tance≤ 100 and iii) p-value≥ 0.1. Here, frequency denotes the number of times
that the sequence feature was selected from a bootstrap sample. Importance of a
sequence feature was computed by dividing its mean weight bythe variance of its
weights computed in the bootstrap repetitions. The p-values were computed using
a Fisher’s exact test based on a contingency table (sequencefeature vs. therapy
outcome).

Furthermore, for computing an interaction p-value betweenthe treatment
outcome (TO) and treatment and genotype information (TH andGT), we use the
likelihood ratio test. Briefly, the likelihood ratio test compares two logistic re-
gression models: one with and the other without an interaction term. P-values are
computed in such a way that under the null hypothesis of no difference, the deviance
(log-likelihood difference between the two models) follows aχ2-distribution (Bickel
and Doksum, 2002).

3 Results

Table 1 shows that the classification performance decreasedas we increased the
minimum number of events in a treatment, even though the difference was not sig-
nificant at a 5% level by the Wilcoxon rank-sum test after Bonferroni correction.
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Thus, the minimum number of events in a treatment was set to 3 for all computa-
tional experiments, since a therapy consisting of only one drug has at least 3 feature
components due to the introduction of absence indicators: NoPIs, NoNRTIs and
NoNNRTIs. Of note, the performance values obtained with a minimum sequence
features size of 3 showed the least variance.

Table 1: Difference in performance (ACC and AUC) with respect to the minimum size of the
sequence feature. The parameter that controls the minimal sequence feature size was varied. Per-
formance was assessed in 10-fold cross-validation on the dataset where patients have 10 or more
treatments (#TC≥ 10).

minimum sequence feature size ACC AUC

1 0.808±0.0414 0.748±0.0520
2 0.788±0.0493 0.741±0.0677
3 0.786±0.0196 0.741±0.0411
4 0.781±0.0368 0.703±0.0961
5 0.768±0.0497 0.700±0.1010

3.1 Comparison with other methods

Tables 2 and 3 list the prediction performance (measured in terms of accuracy (ACC)
and area under the ROC curve (AUC)) of various methods in the three different set-
tings. It can be observed thatsequence boostingconstantly outperforms other clas-
sifiers. Results that exhibit a statistically significant difference are marked with•.
Performance achieved with the binary encoding for historicdrugs and mutations
was in general inferior to the integer encoding (see Tables A2 and A3 in the Ap-
pendix). Improvements over the baseline in terms of ACC are quite pronounced
for the predictor that performs random guesses; compared tothe majority predictor
the improvements (if at all) are for all machine learning approaches only negligi-
ble. The rightmost column of Tables 2 and 3 indicates that non-linear methods (se-
quence boostingand SVM with polynomial and RBF kernels) perform better than
linear methods (logistic regression and SVM with linear kernel), which motivates
us to identify non-linear sequence features.
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Table 2: Comparison of different classification methods in terms of accuracy. Results where
sequence boostingoutperforms other methods with statistically significant difference are marked
with •.

Method #TC≥10 #TC≥5 #TC≥1 mean

baseline (guess) 0.660 0.720 0.746 -
baseline (majority) 0.783 0.832 0.851 -
sequence boosting 0.808±0.0414 0.822±0.0140 0.851±0.0046 0.827±0.0219
SVM poly. (d = 2) •0.768±0.0479 0.811±0.0301 •0.832±0.0188 0.804±0.0326
SVM poly. (d = 3) •0.760±0.0520 0.808±0.0276 •0.836±0.0136 0.801±0.0384
SVM RBF •0.783±0.0064 0.824±0.0048 •0.847±0.0052 0.818±0.0324
SVM linear 0.780±0.0421 •0.805±0.0203 •0.772±0.0210 0.786±0.0172
Logistic regression •0.700±0.0556 •0.780±0.0302 •0.838±0.0118 0.773±0.0693
mean 0.758±0.0408 0.806±0.0226 0.825±0.0141 -

Table 3:Comparison of different classification methods in terms of the area under the ROC curve
(AUC). Results wheresequence boostingoutperforms other methods with statistically significant
difference are marked with•.

Method #TC≥10 #TC≥5 #TC≥1 mean

baseline 0.500 0.500 0.500 -
sequence boosting 0.748±0.0520 0.713±0.0620 0.686±0.0323 0.716±0.0311
SVM poly. (d = 2) 0.702±0.0863 0.699±0.0444 •0.653±0.0340 0.685±0.0275
SVM poly. (d = 3) •0.684±0.0824 0.711±0.0440 0.667±0.0373 0.687±0.0222
SVM RBF 0.729±0.0107 0.684±0.0458 •0.660±0.0233 0.681±0.0501
SVM linear 0.731±0.0941 0.670±0.0766 •0.601±0.0523 0.667±0.0680
Logistic regression •0.567±0.0673 •0.616±0.0530 0.676±0.0490 0.620±0.0546
mean 0.682±0.0682 0.676±0.0528 0.651±0.0392 -

information (i.e. only TO, only GT or only TH) failed to rank patients correctly. For
achieving a reasonable AUC performance, it was necessary touse the therapy in-
formation (TH) in combination with either the therapy outcome information (TO)
or the genotypic information (GT).

3.2 Comparison of different treatment information

Table 4 shows the results on the comparison of different treatment information. In
terms of accuracy no difference between the different treatment information is visi-
ble. From the AUC column, however, we can observe that a single type of treatment
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Table 4: Comparison of different features in terms of accuracy (ACC)and AUC. TO (Therapy
Outcome) indicates the success/failure of a previous treatment, GT (Genotype) indicates the pres-
ence/absence of the 108 mutations, TH (Therapy) indicates the drug compounds.

Feature set ACC AUC

TO 0.778±0.0004 0.520±0.0078
GT 0.756±0.0016 0.549±0.0059
TH 0.733±0.0001 0.617±0.0039
TO + GT 0.760±0.0009 0.533±0.0079
TH + TO 0.759±0.0024 0.752±0.0074
TH + GT 0.776±0.0022 0.756±0.0042
TH + GT + TO 0.783±0.0013 0.737±0.0051

response to the drugs in the prescribed regimen. It is likelythat the past treatment
has an effect on the current treatment. The leftmost column shows the importance
of the variables, the second column the frequency of the sequence features in the
1000 bootstrap repetitions, and the third column shows the p-value computed by a

Table 5:A list of interesting sequence features. Sequence Featuresin the upper rows are associated
with success of the current treatment. Sequence Features inthe lower rows are associated with failure
of the current treatment. Bold font indicates features fromthe current regimen. Interaction p-values
(fifth column) were only computed for sequence features comprisingsuccessor failure.

importance frequency p-value sequence feature {TH, GT} × TO

293 117 3.47e-06 {d4T∧ NFV ∧ success} 1.33e-3
290 128 3.47e-05 {LPV ∧ RTVb ∧ success} 0.10
163 415 6.75e-02 {3TC ∧ DRV ∧ NoNNRTIs} -
161 150 1.83e-02 {3TC ∧ RTVb ∧ DRV} -
-128 231 1.89e-08 {RT210W∧ RT215Y∧ failure} 5.36e-4
-193 402 2.64e-06 {d4T∧ NFV ∧ failure} 0.01
-209 411 3.61e-09 {LPV ∧ RTVb ∧ failure} 2.10e-4
-278 374 8.75e-05 {AZT ∧ NoNNRTIs∧ NoPIs} -

→ {ddI∧ NoNNRTIs∧ NoPIs}

3.3 Identifying discriminative sequence features

In total we obtained 8215 unique sequence features from the 1000 bootstrap repli-
cates. After filtering, however, only 171 sequence featuresremained (listed in Ta-
ble A4 in the Appendix). Table 5 depicts the subset of all discovered sequence
features that are discussed in the next section. Sequence features in bold font de-
note the inclusion of treatment information from the current therapy, i.e. the one
whose response has to be inferred. Sequence features that include drugs from the
current therapy are especially interesting, since the outcome of a therapy is a direct
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4 Discussion

The comparison with other methods showed thatsequence boostingachieved supe-
rior performance compared to both, logistic regression andSVMs (with linear and
non-linear kernels). Furthermore, focusing on the mean performance of the three
settings, we can observe that the mean accuracy increases aswe select patients with
fewer treatment changes. This is simply due to the fact that patients, who are in an
early stage of the disease, can be treated with a higher success rate. This fact is also
reflected by the success rate (baseline and guess) in the three datasets and visualized
in Figure 1. Thus, for the remaining two computational experiments, we focused
on the more challenging setting: predicting the treatment outcomes of patients who
have experienced many treatment changes (#TC≥ 10).

When comparing different treatment information, it turnedout that for achiev-
ing optimal performance short-term therapy outcome (TO) has to be provided either
with genotypic information (GT) or therapy information (TH). Interestingly, the
combination TH+TO performed as well as the combination TH+GT. This suggests
that information on the therapy history (TH) is dependent onthe previous treatment
outcomes or the mutations in past and present genotypes. It is likely that interac-
tions between these treatment information are crucial for the performance. Further
evidence for this hypothesis is provided by analysis of important sequence features.
More precisely, the observed small interaction p-values between treatment outcome
and remaining therapy information (TH and GT) may explain the sharp increase of
the classifier performance when TH is combined with TO or GT. For example, the
sequence feature{d4T∧ NFV ∧ success} with the interaction p-value 1.33×10−3

and importance 293 suggests that the usage of drug d4T with NFV in the past itself
is not predictive. However, once this treatment has experienced a short-term success
in the past, then this indicates a high probability of a successful current treatment.
Such interactions are investigated in more detail in the following.

4.1 Interpretation of sequence features

The sequence boostingmethod generates a linear classifier using non-linear fea-
tures. This facilitates interpretation of features and provides an understanding of

Fisher’s exact test. The fourth column shows the obtained sequence features. The
rightmost column shows the interaction p-values between the therapy and genotype
information (TH and GT) and the therapy outcome information(TO) calculated
by a likelihood ratio test. Of note, in many of the sequence features in which TH
and GT appear together with TO in the same treatment, interaction p-values were
smaller than the 5% significance threshold.
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recently approved by the US Food and Drug Administration (FDA) and is recom-
mended for treating heavily treatment-experienced patients. Combination therapies
using DRV are among the most potent regimens currently available. A sequence
feature that is frequently selected and linked to treatmentfailure comprises muta-
tions RT210W and RT215Y in one of the available patient’s genotypes
{RT210W∧RT215Y∧failure}. These two mutations are thymidine analog muta-
tions and confer resistance against all NRTIs. Since NRTIs are part of almost every
combination therapy the presence of these mutations seriously limits the effective-
ness of the current regimen. An example for a sequence feature representing a
treatment switch is{AZT∧NoNNRTIs∧NoPIs}→{ddI∧NoNNRTIs∧NoPIs}. This
sequence feature is related to failure of the current regimen as indicated by the nega-
tive importance value. A switch from an NRTI-only regimen toanother NRTI-only
regimen was only common in the pre-HAART area. Therefore, this sequence fea-
ture is associated with patients that had a high number of treatment switches (#TC)
and are therefore less likely to be successfully treated.

Sequence boostingcannot only recover well-known facts. A large number
of important sequence features include the short-term treatment outcome of pre-
vious regimens. The fact that response to a previous regimenaffects the current
regimen is not obvious at first. However, if a patient failed aregimen comprising a
potent drug (e.g. LPV) after only a short time, then there were enough mutations in
the predominant viral variant or viral reservoirs to cause failure of the drug. In con-
trast, if the treatment was successful, then the patient’s virus did not acquire enough
resistance mutations to impair the drug (yet). As an examplewe compared the resis-
tance mutations in patients that have the sequence feature{LPV∧RTVb∧success}
(73 patients) with patients with the sequence feature{LPV∧RTVb∧failure} (66
patients). Protease mutations were more prevalent in thefailure group than in
the successgroup. The observed enrichment is significant according to apaired
Wilcoxon rank-sum test on frequencies of single mutations (p-value=4.49×10−10).
Moreover, LPV associated resistance mutations (Johnson etal., 2008) are signif-
icantly more enriched than other protease mutations (p-value=1.01×10−3 using a
one-sided Wilcoxon rank sum test). Figure 5 shows the corresponding detailed his-
togram of frequencies for all mutations.

how the classifier works. In this section we closely look at the interesting sequence
features listed in Table 5.

Sequence boostingidentified usage of DRV (darunavir) in the current regi-
men (indicated by bold font) as a supporting factor for a successful regimen
({3TC∧DRV∧NoNNRTIs} ,{RTVb∧DRV∧NoNNRTIs}). In fact, DRV has been
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Figure 5: Mutation frequencies in the most recent genotype after therapies including
{d4T∧NFV}(left) or {LPV∧RTVb}(right). (left) Patients that experience a treatment failure in gen-
eral had protease mutations that confer resistance againstmany PIs including NFV. Interestingly, in
patients that were successfully treated with NFV, the mutation PRO30N (highlighted in a box) was
enriched. This mutation confers high-level resistance only against NFV, and it can therefore be ex-
pected to have developed during the course of the successfultreatment. The same holds true for the
NFV related mutations PRO77I and PRO93L. (right) Among patients who have experienced a treat-
ment with boosted LPV, protease mutations (highlighted in abox) were more prevalent in thefailure
group than in thesuccessgroup. This explains the higher risk of failing the recent treatment for the
failure group, since resistance mutations to PIs have been already stored in the reservoir during or
before the failure of the past treatment with boosted LPV.
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PR77I and PR93L, which are mainly associated with NFV resistance.
The application ofsequence boostingto the problem revealed that previous

exposure to a drug is not the crucial information for predicting response to a new
regimen. It is more important to know whether drugs were partof a successful
or failing past regimen to draw conclusions about drug resistance especially in the
absence of genotypic information.

5 Conclusion

Sequence boostingcombines an optimization technique with a sequence mining
method. In contrast to SVMs with non-linear kernels, the generated models are
interpretable, which enables clinicians to reason about the obtained discriminative
sequence features. In order to improve confidence in the classifier’s decision it is
valuable to open the “black box” and analyze on what evidencethe classifier’s de-
cision is based. In our computational experiments we found that sequence features
based on information on the treatment history perform well especially for patients
with many treatment changes. By studying the significance ofinteractions, our
approach revealed that information on past treatments paired with their short term
outcome is as valuable as the treatment information paired with genotypic informa-
tion. The successful results on a large HIV data encourages us to apply the same
tool to a broader range of clinical time series problems.

Another example of this phenomenon is provided by patients that were
treated in the past with d4T and NFV and either had a successful (n=33)
{d4T∧NFV∧success} or failing (n=35) therapy{d4T∧NFV∧failure}. Patients that
experience a treatment failure, in general, had protease mutations that confer resis-
tance against many PIs including NFV. Interestingly, in patients that were success-
fully treated with NFV, the mutation PRO30N was enriched. This mutation confers
high-level resistance only against NFV, and it can therefore be expected to have de-
veloped during the course of the successful treatment. The same holds for mutations
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Appendix

Table A1: Overview of considered treatment information. “Mutations” column shows the list of
mutations used in this work. In the “Drugs” column, the drugsin the same group share the same
mode of action against the same molecular target. Drug groups are Protein Inhibitors (PIs), Nu-
cleotide Reverse Transcriptase Inhibitors (NRTIs), Non-Nucleotide Reverse Transcriptase Inhibitors
(NNRTIs), and Fusion Inhibitors (FIs).

Mutations Drugs Treatment Outcome

· Reverse transcriptase mutations · NRTIs · Success

41L, 62V, 65R, 67N, 69i, 70E, 70R, 74V, Lamivudine (3TC), Abacavir (ABC), If viral load drops
75I, 77L, 100I, 103N, 106A,106M, 108I, Zidovudine (AZT), Stavudine (d4T), i) below 400 copies/ml, or
115F, 116Y, 151M, 181C, 181I, 184I, 184V, Zalcitabine (ddC), Didanosine (ddI), ii) two magnitude
188C, 188H, 188L, 190A, 190S, 210W, Tenofovir (TDF), Emtricitabine (FTC) from the treatment start.
215F, 215Y, 219E, 219Q, 225H, 236L

· NNRTIs · Failure

· Protease mutations Delavirdine (DLV), Efavirenz (EFV), Ifno success.
Nevirapine (NVP) Etravirine (TMC125)

10C, 10F, 10I, 10R, 10V, 11I, 13V, 16E,
20I, 20M, 20R, 20T, 20V, 24I, 30N, 32I, · PIs
33F, 33I, 33V, 34Q, 35G, 36I, 36L, 36V,
43T, 46I, 46L, 47A, 47V, 48V, 50L, 50V, Amprenavir (APV), Atazanavir (ATV),
53L, 53Y, 54A, 54L, 54M, 54S, 54T, 54V, Indinavir (IDV) Lopinavir (LPV),
58E, 60E, 62V, 63P, 64L, 64M, 64V, 69K, Nelfinavir (NFV), Ritonavir (RTV),
71I, 71L, 71T, 71V, 73A, 73C, 73S, 73T, boosted dose Ritonavir (RTVb),
74P, 76V, 77I, 82A, 82F, 82I, 82L, 82S, Saquinavir (SQV), Fosamprenavir (FPV),
82T, 83D, 84V, 85V, 88D, 88S, 89V, 90M, Tipranavir (TPV), Darunavir (DRV)
93L, 93M

· FIs

Enfuvirtide (T20)
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Table A3: Comparison of different classification methods (in binary encoding) in terms of the
area under the ROC curve (AUC). As a feature for comparing methods, we used binary indicators
of drugs and mutations in the past and present. Results wheresequence boostingoutperforms with
statistically significant difference are marked with•.

Method #TC≥10 #TC≥5 #TC≥1 mean

baseline 0.500 0.500 0.500 -
sequence boosting •0.748±0.0520 •0.713±0.0620 •0.686±0.0323 0.716±0.0311
SVM poly. (d = 2) •0.674±0.0709 •0.665±0.0528 •0.637±0.0259 0.659±0.0499
SVM poly. (d = 3) •0.651±0.0848 •0.651±0.0595 •0.642±0.0331 0.648±0.0591
SVM RBF •0.704±0.0705 •0.672±0.0519 0.646±0.0261 0.674±0.0495
SVM linear •0.674±0.0628 •0.617±0.0668 •0.555±0.0615 0.615±0.0637
Logistic regression •0.484±0.1178 •0.65±0.0543 •0.65±0.0543 0.595±0.0755
mean 0.638±0.0814 0.651±0.0571 0.626±0.0402 -

Table A2: Comparison of different classification methods (in binary encoding) in terms of ac-
curacy. As a feature for comparing methods, we used binary indicators of drugs and mutations
in the past and present. Results wheresequence boostingoutperforms with statistically significant
difference are marked with•.

Method #TC≥10 #TC≥5 #TC≥1 mean

baseline (guess) 0.660 0.720 0.746 -
baseline (majority) 0.783 0.832 0.851 -
sequence boosting 0.808±0.0414 0.822±0.0140 0.851±0.0046 0.827±0.0219
SVM poly. (d = 2) •0.779±0.0317 0.816±0.0205 •0.835±0.0179 0.810±0.0234
SVM poly. (d = 3) 0.782±0.045 0.811±0.0179 •0.838±0.0166 0.810±0.0265
SVM RBF •0.782±0.0077 0.823±0.0055 •0.844±0.0047 0.816±0.0597
SVM linear •0.777±0.0375 •0.802±0.0162 •0.704±0.0194 0.761±0.0244
Logistic regression •0.678±0.0762 •0.750±0.0144 •0.835±0.0144 0.754±0.035
mean 0.760±0.0396 0.800±0.0149 0.811±0.0146 -
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Table A4:A list of patterns with high importance obtained by bootstrapping. Patterns in the upper
rows are associated with success of the current treatment. Patterns in the lower rows are associated
with failure of the current treatment. IMP stands for importance, FREQ stands for frequency. The
last column shows the interaction p-values by likelihood ratio test between the therapy feature (TH)
or genotype (GT) and the therapy outcome feature (TO). Bold font indicates features from the current
regimen. Interaction p-values (fifth column) were only computed for patterns comprisingsuccessor
failure.

IMP FREQ p-value pattern {TH, GT} × TO

-362 133 5.16e-04 {AZT ∧ IDV ∧ NoNNRTIs} -
-349 199 1.18e-02 {3TC∧ d4T∧ NoNNRTIs} -
-339 134 7.60e-02 {AZT ∧ NoNNRTIs∧ NoPIs}→ {AZT ∧ ddI ∧ NoNNRTIs∧ NoPIs} -
-325 159 8.59e-04 {ddI ∧ NoNNRTIs∧ NoPIs}→ {AZT ∧ ddI∧ NoNNRTIs} -
-305 189 9.61e-03 {AZT ∧ NoNNRTIs∧ NoPIs}→ {AZT ∧ NoNNRTIs∧ NoPIs} -
-303 194 4.21e-03 {IDV ∧ NoNNRTIs∧ failure} 0.62
-299 220 2.92e-02 {TDF ∧ RTVb ∧ NoNNRTIs} -
-288 120 1.58e-07 {TDF ∧ ATV ∧ NoNNRTIs} -
-278 374 8.75e-05 {AZT ∧ NoNNRTIs∧ NoPIs}→ {ddI∧ NoNNRTIs∧ NoPIs} -
-277 192 5.92e-04 {ddI ∧ RTVb ∧ NoNNRTIs} -
-276 145 4.91e-05 {3TC∧ LPV ∧ RTVb∧ NoNNRTIs} -
-276 281 5.87e-02 {3TC∧ d4T∧ NoPIs} -
-265 326 7.18e-04 {ddI ∧ RTVb∧ NoNNRTIs} -
-263 142 1.84e-02 {TDF ∧ ATV ∧ RTVb} -
-263 174 2.44e-05 {AZT ∧ NoNNRTIs∧ NoPIs}→ {ddI∧ NoNNRTIs∧ NoPIs} -

→ {AZT ∧ NoNNRTIs∧ NoPIs}
-262 366 2.57e-06 {3TC∧ NoNNRTIs∧ failure} 0.06
-260 116 6.87e-02 {IDV ∧ NoNNRTIs∧ success}→ {3TC∧ IDV ∧ NoNNRTIs} 0.58
-260 152 7.52e-04 {d4T∧ ddI∧ NoNNRTIs}→ {3TC∧ d4T∧ NoNNRTIs} -
-258 158 8.27e-02 {AZT ∧ LPV ∧ RTVb} -
-257 158 7.50e-10 {3TC∧ RTVb∧ failure} 7.97e-5
-252 226 3.74e-03 {ddI ∧ TDF∧ failure} 0.87
-252 425 1.32e-04 {ddI ∧ NoNNRTIs∧ NoPIs}→ {AZT ∧ NoNNRTIs∧ NoPIs} -
-251 438 3.90e-06 {LPV ∧ RTVb∧ NoNNRTIs} -
-248 831 2.07e-06 {ddI ∧ NoNNRTIs∧ failure} 0.01
-248 118 1.23e-02 {3TC∧ NoNNRTIs∧ failure}→ {LPV ∧ RTVb∧ NoNNRTIs} 4.15e-3
-247 504 4.90e-02 {3TC∧ NVP ∧ NoPIs} -
-246 180 5.13e-02 {AZT ∧ NoNNRTIs∧ NoPIs}→ {AZT ∧ SQV∧ NoNNRTIs} -
-242 581 1.67e-05 {3TC∧ RTVb∧ NoNNRTIs} -
-241 138 2.55e-05 {3TC∧ TDF∧ NoNNRTIs}→ {TDF ∧ RTVb ∧ NoNNRTIs} -
-241 423 2.10e-02 {ABC ∧ d4T∧ NoNNRTIs} -
-239 597 2.01e-05 {d4T∧ SQV∧ NoNNRTIs} -
-239 371 1.36e-05 {IDV ∧ RTVb∧ NoNNRTIs} -
-235 780 1.99e-02 {ddC∧ NoNNRTIs∧ NoPIs} -
-234 184 1.78e-03 {3TC∧ d4T∧ NFV} -
-231 116 6.91e-02 {AZT ∧ NoNNRTIs∧ NoPIs}→ {AZT ∧ ddI ∧ NoNNRTIs} -
-230 147 3.44e-02 {TDF ∧ FTC ∧ RTVb} -
-230 133 4.81e-06 {AZT ∧ ddC∧ NoNNRTIs} -
-227 215 3.54e-02 {3TC∧ ABC ∧ failure} 0.02
-227 496 1.03e-03 {3TC∧ ABC ∧ NoNNRTIs} -
-225 566 1.13e-05 {d4T∧ RTVb∧ NoNNRTIs} -
-224 148 3.05e-03 {3TC∧ RTVb∧ NoNNRTIs}→ {3TC ∧ RTVb ∧ NoNNRTIs} -
-217 281 6.91e-03 {LPV ∧ RTVb∧ NoNNRTIs}→ {3TC ∧ RTVb ∧ NoNNRTIs} -
-216 153 5.40e-02 {3TC∧ AZT ∧ NoPIs}→ {3TC∧ RTVb∧ NoNNRTIs} -
-216 123 2.13e-06 {d4T∧ NoNNRTIs∧ failure}→ {LPV ∧ RTVb∧ NoNNRTIs} 0.01
-214 152 6.57e-02 {3TC∧ ddI∧ NoNNRTIs}→ {3TC∧ RTVb∧ NoNNRTIs} -
-214 288 9.09e-11 {RTVb∧ NoNNRTIs∧ failure} 1.24e-5
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IMP FREQ p-value pattern {TH, GT} × TO

-212 101 6.09e-03 {ABC ∧ d4T∧ NoNNRTIs∧ NoPIs} -
-211 277 1.36e-02 {AZT ∧ NoNNRTIs∧ NoPIs}→ {3TC∧ d4T∧ NoPIs} -
-210 121 4.45e-03 {ddI∧ TDF∧ RTVb} -
-209 411 3.61e-09 {LPV ∧ RTVb∧ failure} 2.10e-4
-208 697 3.91e-03 {AZT ∧ NoNNRTIs∧ NoPIs}→ {AZT ∧ NoNNRTIs∧ NoPIs} -

→ {3TC∧ d4T∧ NoNNRTIs}
-206 581 4.73e-04 {3TC∧ AZT ∧ failure} 0.12
-203 184 6.96e-06 {ddI∧ RTVb∧ NoNNRTIs∧ failure} 0.36
-199 101 1.22e-02 {d4T∧ RTV ∧ NoNNRTIs} -
-194 502 7.49e-07 {3TC∧ RTVb∧ NoNNRTIs}→ {TDF ∧ RTVb ∧ NoNNRTIs} -
-193 234 5.81e-06 {AZT ∧ NoNNRTIs∧ NoPIs}→ {3TC∧ d4T∧ NoNNRTIs} -
-193 402 2.64e-06 {d4T∧ NFV ∧ failure} 0.01
-193 188 1.03e-02 {3TC∧ d4T∧ NoNNRTIs}→ {d4T∧ RTV ∧ SQV} -
-193 124 7.32e-13 {d4T∧ NVP ∧ NFV} -
-192 246 9.59e-07 {3TC∧ NFV ∧ NoNNRTIs}→ {3TC∧ ABC ∧ NoNNRTIs} -
-192 126 2.95e-04 {3TC∧ NoPIs∧ RT67N} -
-191 104 4.79e-08 {PRO63P∧ RT67N∧ RT70R} -
-186 368 2.96e-02 {ddI∧ NoNNRTIs∧ NoPIs}→ {ddC∧ NoNNRTIs∧ NoPIs} -
-185 135 5.07e-02 {TDF∧ SQV∧ NoNNRTIs} -
-185 172 1.31e-03 {3TC∧ SQV∧ NoNNRTIs}→ {d4T∧ NoNNRTIs∧ failure} 0.47
-185 175 3.93e-04 {d4T∧ LPV ∧ NoNNRTIs} -
-180 180 1.15e-02 {AZT ∧ RTVb∧ NoNNRTIs}→ {AZT ∧ RTVb ∧ NoNNRTIs} -
-176 176 1.62e-03 {SQV∧ NoNNRTIs∧ failure}→ {d4T∧ SQV∧ NoNNRTIs} 0.04
-175 125 1.57e-02 {3TC∧ IDV ∧ NoNNRTIs}→ {d4T∧ SQV∧ NoNNRTIs} -
-174 179 3.58e-02 {RTVb∧ PRO63P∧ RT67N} -
-174 273 3.14e-04 {AZT ∧ NoNNRTIs∧ NoPIs}→ {3TC∧ SQV∧ NoNNRTIs} -
-173 109 1.46e-10 {d4T∧ ddI∧ RTVb}→ {d4T∧ RTVb∧ NoNNRTIs} -
-172 127 1.12e-02 {d4T∧ SQV∧ NoNNRTIs}→ {d4T∧ NoNNRTIs∧ failure} 0.13
-172 218 1.04e-02 {TDF∧ ATV ∧ failure} 4.90e-5
-171 166 3.80e-05 {d4T∧ NoNNRTIs∧ failure}→ {d4T∧ SQV∧ NoNNRTIs} -
-171 117 3.98e-05 {ddI∧ APV ∧ NoNNRTIs} -
-170 145 2.51e-04 {3TC∧ AZT ∧ PRO13V} -
-166 174 9.56e-05 {d4T∧ NoNNRTIs∧ PRO13V} -
-166 277 2.12e-12 {3TC∧ RTVb∧ FPV} -
-165 107 1.34e-05 {PRO10I∧ PRO63P∧ RT70R} -
-164 183 2.24e-05 {RTVb∧ FPV∧ NoNNRTIs} -
-162 129 2.44e-07 {3TC∧ RT215Y∧ failure} 0.02
-160 278 4.86e-07 {APV ∧ RTVb∧ NoNNRTIs} -
-158 360 3.54e-04 {ABC ∧ d4T∧ failure} 0.01
-155 207 7.13e-08 {RTVb∧ SQV∧ NoNNRTIs}→ {d4T∧ RTVb∧ NoNNRTIs} -
-148 340 5.47e-05 {d4T∧ ddI∧ NoNNRTIs}→ {d4T∧ SQV∧ NoNNRTIs} -
-147 112 1.87e-02 {AZT ∧ NoNNRTIs∧ NoPIs}→ {ddI∧ NoNNRTIs∧ NoPIs} -

→ {ddC∧ NoNNRTIs∧ NoPIs}
-139 124 3.01e-03 {3TC∧ PRO20R∧ PRO36I} -
-133 101 2.71e-09 {d4T∧ EFV∧ RTVb}→ {d4T∧ LPV ∧ NoNNRTIs} -
-132 119 4.72e-07 {PRO63P∧ RT184V∧ RT215Y} -
-128 231 1.89e-08 {RT210W∧ RT215Y∧ failure} 5.36e-4
-118 102 1.74e-04 {d4T∧ ddI∧ NoNNRTIs} -

Table A4, continued.
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IMP FREQ p-value pattern {TH, GT} × TO

152 179 6.47e-06 {3TC∧ d4T∧ NoNNRTIs}→ {RTVb∧ NoNNRTIs∧ failure} 0.43
161 150 1.83e-02 {3TC ∧ RTVb ∧ DRV} -
163 415 6.75e-02 {3TC ∧ DRV ∧ NoNNRTIs} -
168 111 2.40e-02 {3TC∧ NoNNRTIs∧ NoPIs} -
171 455 6.96e-03 {3TC∧ d4T∧ NoNNRTIs}→ {ddI∧ RTVb∧ NoNNRTIs} -
177 304 3.71e-08 {3TC∧ NoNNRTIs∧ failure}→ {ddI ∧ NoNNRTIs∧ failure} 0.64
183 268 5.76e-04 {NoNNRTIs∧ PRO93L∧ RT184V} -
184 134 9.80e-02 {RTVb∧ T20∧ success} 0.03
197 134 5.06e-03 {3TC∧ d4T∧ NFV}→ {3TC∧ d4T∧ NFV} -
204 132 1.02e-02 {TDF∧ RTVb∧ NoNNRTIs}→ {RTVb∧ NoNNRTIs∧ success} 5.19e-7
208 239 1.61e-05 {d4T∧ RTVb∧ NoNNRTIs}→ {d4T∧ RTVb∧ failure} 0.03
210 140 6.85e-06 {d4T∧ ddI∧ NoPIs}→ {LPV ∧ RTVb∧ NoNNRTIs} -
211 294 6.14e-04 {RTVb∧ NoNNRTIs∧ PRO93L} -
213 168 3.10e-11 {d4T∧ EFV∧ NoPIs}→ {3TC∧ RTVb∧ NoNNRTIs} -
214 569 5.96e-02 {3TC∧ NoNNRTIs∧ NoPIs}→ {3TC∧ IDV ∧ NoNNRTIs} -
214 218 1.84e-07 {3TC∧ AZT ∧ NoPIs}→ {3TC∧ IDV ∧ NoNNRTIs} -
214 250 3.87e-03 {TDF∧ RTVb∧ NoNNRTIs∧ success} 3.38e-3
215 330 8.33e-02 {LPV ∧ RTVb∧ NoNNRTIs}→ {3TC∧ NoNNRTIs∧ NoPIs} -
216 166 2.53e-02 {d4T∧ ddI∧ NoNNRTIs}→ {ddI ∧ NoNNRTIs∧ NoPIs} -
217 117 3.96e-04 {AZT ∧ ddI ∧ NoNNRTIs}→ {ddI ∧ NoNNRTIs∧ NoPIs} -
217 207 1.12e-03 {3TC∧ ddC∧ NoPIs} -
220 415 1.53e-03 {3TC∧ AZT ∧ NoNNRTIs}→ {3TC∧ d4T∧ IDV} -
220 167 1.40e-02 {3TC∧ RTVb∧ NoNNRTIs}→ {3TC∧ NoNNRTIs∧ NoPIs} -
220 243 3.75e-04 {ddI∧ EFV∧ success} 0.09
224 214 5.92e-07 {NoNNRTIs∧ PRO63P∧ PRO93L} -
226 842 9.17e-05 {3TC∧ NoPIs∧ success} 1.61e-6
226 386 1.17e-06 {ddI∧ NoNNRTIs∧ success} 0.05
226 102 3.05e-02 {3TC∧ d4T∧ NoNNRTIs}→ {d4T∧ RTVb∧ NoNNRTIs} -
229 342 5.87e-05 {d4T∧ NVP ∧ success} 1.48e-4
230 264 3.32e-02 {3TC∧ ddI ∧ NoNNRTIs}→ {3TC∧ ddI∧ NoNNRTIs} -
230 168 3.94e-04 {d4T∧ NVP ∧ NoPIs} -
231 334 4.16e-02 {AZT ∧ NoNNRTIs∧ NoPIs}→ {AZT ∧ IDV ∧ NoNNRTIs} -
233 250 3.72e-02 {ddI∧ RTVb∧ NoNNRTIs}→ {RTVb∧ NoNNRTIs∧ success} 0.01
233 491 5.08e-04 {3TC∧ RTVb∧ success} 0.03
234 240 3.54e-08 {d4T∧ ddI∧ NoPIs}→ {3TC∧ RTVb∧ NoNNRTIs} -

Table A4, continued.
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IMP FREQ p-value pattern {TH, GT} × TO

237 287 7.17e-04 {ABC ∧ ddI∧ NoPIs} -
237 223 7.69e-02 {ABC ∧ TDF∧ NoNNRTIs} -
239 109 6.51e-02 {3TC∧ ABC ∧ NoPIs} -
240 155 1.06e-06 {3TC∧ ddI ∧ NoNNRTIs}→ {3TC∧ TDF∧ NoNNRTIs} -
241 189 9.75e-02 {d4T∧ NFV ∧ NoNNRTIs}→ {d4T∧ NFV ∧ NoNNRTIs} -
242 149 1.21e-03 {ddI∧ NoNNRTIs∧ failure}→ {ddI∧ NoNNRTIs∧ NoPIs} 0.04
242 106 7.71e-06 {3TC∧ LPV ∧ NoNNRTIs}→ {3TC∧ RTVb∧ NoNNRTIs} -
243 137 1.08e-06 {EFV∧ NoPIs∧ success} 0.01
244 224 1.18e-03 {3TC∧ RTVb∧ NoNNRTIs}→ {3TC∧ TDF∧ NoNNRTIs} -
244 102 1.73e-03 {AZT ∧ NoNNRTIs∧ failure}→ {3TC∧ ddI∧ NoNNRTIs} 0.01
246 116 7.30e-02 {3TC∧ AZT ∧ TDF∧ NoNNRTIs} -
246 159 3.11e-02 {AZT ∧ NoNNRTIs∧ NoPIs}→ {AZT ∧ NoNNRTIs∧ NoPIs} -

→ {3TC∧ IDV ∧ NoNNRTIs}
246 132 3.00e-02 {3TC∧ ddC∧ NoNNRTIs} -
247 104 9.23e-03 {RTVb∧ NoNNRTIs∧ success}→ {LPV ∧ RTVb∧ NoNNRTIs} 0.02
248 896 3.09e-11 {d4T∧ NoNNRTIs∧ success} 8.15e-5
248 195 2.49e-02 {d4T∧ EFV∧ success} 0.09
254 170 2.42e-02 {ABC ∧ AZT ∧ NoNNRTIs} -
256 373 3.60e-04 {NVP∧ NoPIs∧ success} 0.01
256 360 1.65e-02 {ABC ∧ EFV∧ NoPIs} -
258 115 1.04e-03 {ABC ∧ AZT ∧ NoPIs} -
259 141 5.45e-02 {3TC∧ d4T∧ NoNNRTIs}→ {3TC∧ d4T∧ NoNNRTIs} -

→ {3TC∧ d4T∧ NoNNRTIs}
261 584 8.62e-04 {d4T∧ ddI∧ success} 0.01
261 311 1.49e-04 {3TC∧ ABC ∧ NoNNRTIs}→ {3TC∧ ABC ∧ NoPIs} -
262 102 7.43e-02 {ddI∧ NoPIs∧ success} 0.01
267 174 4.33e-02 {AZT ∧ ddI ∧ NoNNRTIs}→ {AZT ∧ ddI∧ NoNNRTIs} -
267 160 4.05e-05 {ddI∧ NoNNRTIs∧ NoPIs}→ {AZT ∧ NoNNRTIs∧ NoPIs} -

→ {AZT ∧ NoNNRTIs∧ NoPIs}
268 528 7.11e-02 {3TC∧ ddI ∧ NoNNRTIs} -
272 143 7.26e-02 {AZT ∧ NoNNRTIs∧ NoPIs}→ {3TC∧ NoNNRTIs∧ NoPIs} -
273 192 2.65e-03 {d4T∧ ddI∧ NoNNRTIs]}→ {d4T∧ ddI∧ NoPIs} -
274 277 2.45e-02 {3TC∧ d4T∧ NoNNRTIs}→ {3TC∧ d4T∧ NFV} -
275 184 9.68e-06 {ddI∧ NFV ∧ success} 1.21e-4
284 497 1.76e-04 {IDV ∧ NoNNRTIs∧ success} 1.53e-3
287 364 7.60e-04 {ABC ∧ EFV∧ success} 0.21
290 128 3.47e-05 {LPV ∧ RTVb∧ success} 0.10
293 117 3.47e-06 {d4T∧ NFV ∧ success} 1.33e-3
298 163 7.93e-06 {d4T∧ NoPIs∧ success} 4.95e-21
299 109 2.70e-03 {ddI∧ NoNNRTIs∧ NoPIs} -
300 167 4.64e-02 {ddI∧ NoNNRTIs∧ PRO63P} -
302 268 1.27e-02 {3TC∧ ddI ∧ NoPIs} -
304 172 5.96e-02 {3TC∧ ABC ∧ AZT ∧ NoNNRTIs} -
308 101 7.72e-05 {AZT ∧ ddI ∧ NoPIs}→ {ddI ∧ NoNNRTIs∧ NoPIs} -
310 108 3.61e-03 {3TC∧ NoNNRTIs∧ success}→ {3TC∧ AZT ∧ NoPIs} 0.01
311 183 7.08e-05 {ddI∧ NoNNRTIs∧ NoPIs}→ {3TC∧ NoNNRTIs∧ NoPIs} -
348 132 2.35e-04 {3TC∧ ABC ∧ AZT}→ {ABC ∧ AZT ∧ NoPIs} -
374 155 2.52e-10 {NFV ∧ NoNNRTIs∧ success} 7.28e-4

Table A4, continued.
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