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Abstract

Time-of-flight (TOF) depth cameras provide robust depth

inference at low power requirements in a wide variety of

consumer and industrial applications. These cameras recon-

struct a single depth frame from a given set of infrared (IR)

frames captured over a very short exposure period. Operat-

ing in this mode the camera essentially forgets all informa-

tion previously captured - and performs depth inference from

scratch for every frame. We challenge this practice and pro-

pose using previously captured information when inferring

depth. An inherent problem we have to address is camera

motion over this longer period of collecting observations.

We derive a probabilistic framework combining a simple but

robust model of camera and object motion, together with an

observation model. This combination allows us to integrate

information over multiple frames while remaining robust to

rapid changes. Operating the camera in this manner has im-

plications in terms of both computational efficiency and how

information should be captured. We address these two issues

and demonstrate a realtime TOF system with robust tem-

poral integration that improves depth accuracy over strong

baseline methods including adaptive spatio-temporal filters.

1. Introduction

Current time-of-flight depth cameras operate by capturing

a set of RAW intensity frames under active illumination in

the infrared band. A depth algorithm then combines multiple

captured RAW frames to produce a single depth image [17].

Since both the camera and objects in the scene may move,

the cameras are inherently designed to collect the set of IR

frames over a very short exposure period. Likewise, the

standard algorithms do not use previously captured frames

because compensating for motion is not straightforward.

If the scene and camera were static we could obtain more

accurate estimates by using a larger number of IR frames

captured over longer periods of time since then our signal

will be stronger and we integrate more light. In addition, if

our hardware allows this, we will also be able to use different

active measurement patterns at different frames. This can

enable better depth disambiguation.

In this paper we propose a realtime solution for integrat-

ing time-of-flight observations over large time periods in the

presence of object and camera motion. Figure 1 illustrates
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Figure 1: Basic idea of the proposed method: (a) an ordinary

(static) time-of-flight camera captures a set of infrared (IR)

frames using the same active measurement pattern (grey)

in each time step and uses the captured information only

once, in the current time step, to reconstruct depth; (b) the

proposed dynamic time-of-flight camera uses different mea-

surement patterns in each time step (in this case two, shown

in orange and purple) and integrates multiple measurements

in time (additional arrows) to improve the depth accuracy.

our approach. The standard “static” approach is illustrated in

Figure 1a, where depth is computed from the measured RAW

intensities through simple phase-space methods [17, 16] for

modulated TOF, or via a simple generative model [1] for

pulsed TOF. All current depth cameras are forgetful because

they discard previously captured information and use only

the most recent RAW frames, as shown in Fig. 1a.

But RAW frames that were captured in the near past

do contain information about the scene depth, even when

objects or the camera are moving. We propose a model to use

this information across frames to improve depth accuracy.

On the right, Figure 1b illustrates the novel sensing and

inference framework we describe in this paper. Inference is

done using both current frame’s IR images, and the previous

frame’s IRs, as shown by the additional arrows. Sensing is

more flexible and may be done using different active mea-

surement patterns, as shown by the orange and purple boxes.

We obtain the added flexibility in sensing and the ability

to use previous observations by a probabilistic generative

model combining motion and observation.

We remark that the (hardware) ability to change active

measurement patterns is not theoretical. It is common to

distinguish between modulated TOF (e.g. [3, 38]) and

pulsed TOF technologies (e.g. [40, 1]). In the former both the

illumination and the integration profiles are sinusoidal, and

changing the measurement pattern is not straightforward. In

pulsed TOF, the integration profile is more flexible and may

indeed be changed between different frames. In this work

we use a pulsed TOF camera, similar to the one used by [1].1

This device enables us to toggle between two different active

1The hardware details of this camera are described in [40, 12, 42].
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measurement patterns at 30Hz.

Computationally there is no difference between modu-

lated and pulsed time of flight. Following [1], the so-called

response curve (see Section 2) may either be sine-like (mod-

ulated TOF) or more general (pulsed TOF). Our approach is

general and handles both technologies seamlessly.

Contributions. In this paper we make the following

contributions over the state-of-the-art in TOF imaging:

• We formulate a generative model for TOF observations

with camera/object motion;

• We perform principled Bayesian inference on this

model to obtain improved depth estimates using IR

images captured over several frames;

• We design the active measurement patterns such that

we collect complementary information over time;

• Using a regression approach we demonstrate the first

realtime temporal integration of TOF sensor data, at

low compute and memory budget.

2. Bayesian Time-of-Flight

In this section we give a brief summary of the Bayesian
time-of-flight model proposed in [1]. This model is a proba-

bilistic generative model P (~R, ~θ) that for each pixel relates

unknown imaging conditions ~θ to an observed response vec-

tor ~R. In the basic version of the model proposed in [1] the
imaging conditions correspond to the depth t, the effective
reflectivity (albedo) ρ, and an ambient light component λ

which illuminates the imaged surface. We write ~θ = (t, ρ, λ)
for all the unknown imaging conditions. We specify the
generative model as

~θ ∼ P (~θ), (prior) (1)

~µ | ~θ = ρ ~C(t) + ρ λ ~A, (SP mean response) (2)

Σ | ~µ = diag(α ~µ+K), (noise) (3)

~R | ~µ ∼ N (~µ,Σ). (observed response) (4)

In (3) of the above model α and K correspond to sensor-

specific constants describing shot noise and read noise, re-

spectively [13]. In (2) we use ~C and ~A to describe the

noise-free camera response as follows. For a given pixel, the

function ~C : [tmin, tmax] → R
n maps a depth t to an ideal

responses vector that would be observed on a surface with

100 percent reflectivity and no ambient light. Likewise the

vector ~A ∈ R
n corresponds to the response caused by one

unit of ambient light on such ideal surface.

λ

ρ

t

Figure 2: Model (2).

Because light is additive, we

can see in (2) that the active il-

lumination response ~C(t) and

ambient light response λ ~A are

summed and scaled by the sur-

face reflectivity ρ, as shown in Figure 2. A more detailed

derivation of the model (1)–(4) is available in [1]. The model

is named “single-path (SP) model“ because it describes the

direct single light path response at a surface.

Inference in the above model corresponds to estimating

the posterior distribution, using Bayes rule [4],

P (~θ|~R) ∝ P (~R|~θ)P (~θ). (5)

The difficulty in this inference problem is the nonlinear func-

tion ~C(t) and in [1] the authors proposed a solution based on

importance sampling, but in general other approximate infer-

ence methods could be used. We now describe a variation of

the above model.

2.1. Modeling Multipath

In (2) we model the response due to the direct reflection

of the emitted light. In real scenes multipath effects due to

indirect light corrupts the observation [17].

Based on [14] the authors of [1] consider a simple “two-

path” (TP) model for multipath effects. The only change in

model (1)–(4) is to substitute (2) with

~µ | ~θ = ρ
(

~C(t) + ρ2 ~C(t2) + λ ~A
)

, (TP mean) (6)

where the imaging conditions ~θ = (t, ρ, λ, t2, ρ2) now

λ

ρ

ρ2

t

t2

Figure 3: Model (6).

contain the parameters of a sec-

ond surface at depth t2 with re-

flectivity ρ2, as shown in Fig-

ure 3. In [1] this model im-

proved depth accuracy in real-

istic scenes. This simple multi-

path model is readily supported

by our proposed dynamic time-of-flight model.

3. Dynamic Time-of-Flight

We now extend the Bayesian time-of-flight model to in-

clude temporal dynamics. To introduce temporal dependen-

cies, we first introduce a time index s to the observation vec-

tor ~R(s), and also assume the unknown imaging conditions

to be time-dependent as ~θ(s). For the temporal dynamics

we use the formalism of state space models (SSM) [11],

also known as general hidden Markov models (HMM). We

assume Markovian dynamics on the sequence of imaging

conditions for each spatial location ~θ(s). For one pixel this

gives a joint distribution over S frames as

~θ(s)|~θ(s−1) ∼ P (~θ(s)|~θ(s−1)), (temporal dynamics) (7)

~R(s) | ~θ(s) ∼ P (~R(s) | ~θ(s)). (observation model) (8)

Equivalently, we can write (7)–(8) in HMM form,

P (~R(1:S), ~θ(1:S)) =
S∏

s=1

P (~R(s)|~θ(s))

︸ ︷︷ ︸

(A)

S−1∏

s=1

P (~θ(s+1)|~θ(s))

︸ ︷︷ ︸

(B)

P (θ(1)). (9)
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In the above equation we have used the notation 1 : S to

describe the set of integers between one and S such that
~θ(1:S) is the tuple (~θ(1), . . . , ~θ(S)); this notation is commonly

used in the literature on SSMs. (A) in (9) corresponds to

the observation model which is identical to the per-frame

Bayesian model (1)–(4). The part (B) is the model of the

temporal dynamics which couples multiple frames together.

We will describe this dynamics model in more detail below.

For the choice S = 1 we recover the original static model

in which only the most recent observation together with the

prior is used for inferring ~θ. We now describe a model of

temporal change for the evolving imaging conditions.

The temporal model P (~θ(s+1)|~θ(s)) is a critical compo-

nent in our approach; if we manage to accurately describe the

evolution over time of imaging conditions at each pixel then

the temporal model leads to statistically more efficient use

of the available observations and consequently to improved

depth estimates. However, there is a risk in making temporal

assumptions well known in the visual tracking literature [43]:

if the temporal assumptions are too strong they may override

evidence present in the observation likelihood leading to sys-

tematic bias, drift, or—in the case of tracking—being “stuck

in the background”. To prevent this we propose a general

way to robustify the temporal dynamics.

3.1. Robust Temporal Dynamics

To robustify a given temporal model Q, we propose a
temporal model of the following mixture form.

P (~θ(s+1) | ~θ(s)) = ω P (~θ(s+1))+(1−ω)Q(~θ(s+1) | ~θ(s)). (10)

Here P (~θ(s+1)) is the independent prior as in (1), and Q
is a given, generally simpler, temporal model. The mixture

weight ω ∈ [0, 1] blends between an independent model

(ω = 1) and the dynamics described by Q (ω = 0).

Intermediate values of ω lead to a robust temporal model

in the sense that if two observations R(s) and R(s+1) differ

sufficiently strongly, then the model can fall back on the

independent model, explaining each observation separately.

The robustness can also be seen from the observation that

the mixture model (10) will usually have heavier tails in
~θ(s+1) compared to the simpler model Q because the prior

is defined over the full domain. We will verify the claimed

robustness experimentally in Section 6.4.

To complete the description of our motion model (10) we

now describe the derivation of Q that we use.

3.2. Specification and Empirical Prior

The change in imaging conditions depends on two factors,

the camera trajectory and the scene. To find suitable priors,

we will use empirical data.

To understand typical camera trajectories we use eleven

handheld camera trajectories from the SLAM bench-

mark [39]. We resample the trajectories from their orig-

inal 100Hz to 30Hz, our target frame rate, yielding 32k

six-dimensional camera motion vectors. We then approx-

imately fit Normal distributions to the change in camera

translation and rotation, which all have a mean change

of zero. For frame-to-frame translation we obtain stan-

dard deviations σtx = σtz = 0.004m for the horizon-

tal and forward-backward motion and σty = 0.001m for

the vertical motion. For rotation we obtain standard de-

viations σrp = σry = 0.0075rad for pitch and yaw, and

σrr = 0.003rad for roll.

To understand scene geometry we leverage the rendering

simulation approach proposed in [1]. Specifically we use

the same five scenes used in [1] and the camera motion

model just discussed to randomly sample pairs of frames

with simulated camera motion. This gives us a pair of ground

truth depth frames, together with ground truth reflectivity

and ambient components. For each of the five scenes we

randomly sample ten pairs, yielding a total of 50 pairs of

simulated ground truth frames and a total of 10.6M sampled

pairs of imaging conditions (θ
(s+1)
i , θ

(s)
i ) to estimate the

prior Q(~θ(s+1) | ~θ(s)) from.

By inspecting the empirical histograms of the change in

imaging conditions, shown in Figure 4, for a 30Hz handheld

camera we propose the following temporal model for the

imaging conditions at each sensor pixel.

t
(s+1) | t(s) ∼ Laplace(µ = t

(s)
, b = 0.75), (11)

fρ ∼ Laplace(µ = 1, b = 0.15), (12)

ρ
(s+1) | ρ(s) = fρ ρ

(s)
, (13)

fλ ∼ Laplace(µ = 1, b = 0.25), (14)

λ
(s+1) | λ(s) = fλ λ

(s)
. (15)

Here the Laplace distribution [22, 23] has the probabil-

ity density function Laplace(x;µ, b) which is equal to

exp(−|x−µ|/b)/(2b). Whereas the magnitude of the depth

change does not depend on the current depth, the change

in the reflectivity and ambient light are best modelled via a

multiplicative change, as we illustrate in Fig. 4.

The above is the prior for the single-path model where
~θ = (t, ρ, λ). For the two-path model we believe t2 and

ρ2 to qualitatively behave as t and ρ and therefore select

identical priors, t
(s+1)
2 | t

(s)
2 ∼ Laplace(µ = t

(s)
2 , b = 0.75),

and fρ2
∼ Laplace(µ = 1, b = 0.15), with ρ

(s+1)
2 | ρ

(s)
2 =

fρ2
ρ
(s)
2 . We now describe how the model (11)–(15) is used

for joint temporal inference.

3.3. Dynamic Depth Inference

In general, inference in non-linear state space models such

as (9) is difficult and computationally demanding, typically

requiring sequential Monte Carlo approximations [8, 10] or

Markov chain Monte Carlo (MCMC) approximations [28].

For this reason, we approximate (9) as follows. We fix

S to a small number and only consider the limited past as
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Figure 4: Prior distributions estimated from empirical data: (a) the change of depth prior is an offset to the previous t(s) with

the magnitude of change being independent of the current depth; (b) the change in reflectivity is multiplicative; (c) like the

reflectivity the change in ambient light is multiplicative.

described by the most recent S observations ~R(1:S). This is

an approximation because it assumes that the influence of

past observations decays quickly enough with time such that

after S frames we can ignore these old measurements [28].

In this approximate setting we are given, for each pixel,

a fixed length sequence of measurement vectors ~R(1:S) =
(~R(1), . . . , ~R(S)), and we would like to infer the posterior

distribution over imaging conditions, given by Bayes rule as

P (~θ(1:S) | ~R(1:S)) ∝ P (~θ(1:S) , ~R(1:S)). (16)

For the static single frame case (S = 1) the authors of [1]

proposed a solution based on importance sampling [26, 33].

We found this solution difficult to extend to the dynamic

case (16) due to the higher dimensionality of our prob-

lem [27]. Instead we propose to perform posterior inference

using Markov chain Monte Carlo (MCMC) [6].

3.4. Markov Chain Monte Carlo Approximation

Intuitively MCMC works as follows: we start with an

initial state ~θ(1:S), perhaps sampled from our prior. We then

iteratively and randomly perturb this state via a Markov

chain in such a manner that it eventually will be distributed

according to (16). By sampling from the posterior in such

an iterative fashion we can generate a correlated sequence of

posterior samples which we then use to summarize the pos-

terior, for example, to make a point prediction for depth. We

use the Metropolis-Hastings (MH) chain construction [18]

and found this method simple to implement and reliable. We

provide additional validation in the supplementary materials.

To apply MCMC sampling we need to specify the MH

transition kernel that we use. We use a mixture kernel, pick-

ing a random s ∈ {1, . . . , S}, then performing at random

one of the following proposal perturbations.

t
′(s) ∼ N (µ = t

(s)
, σ = 10cm), (17)

ρ
′(s) ∼ N (µ = ρ

(s)
, σ = 0.1), (18)

λ
′(s) ∼ N (µ = λ

(s)
, σ = 1), (19)

~θ
′(1:S) ∼ P (~θ(1:S)). (20)

The first three kernels (17)–(19) make a small modifica-

tion to a single imaging condition in the s’th frame. The

last kernel (20) is an independent prior kernel, which is

used to escape local maxima of the likelihood surface [25].

Each of the above proposals is of the general form ~θ′(1:S) ∼
W (~θ′(1:S) | ~θ(1:S)). We accept or reject each proposed per-

turbation ~θ′(1:S) with probability a(~θ(1:S) → ~θ′(1:S)) =
min{1, ā} according to the MH rule [18], where

ā =
W (~θ(1:S) | ~θ′(1:S))P (~θ′(1:S) | ~R(1:S))

W (~θ′(1:S) | ~θ(1:S))P (~θ(1:S) | ~R(1:S))
. (21)

At all times the imaging conditions ~θ(1:S) are constrained

to a box region specified by t(s) ∈ [80cm, 550cm], ρ(s) ∈

[0, 1], λ(s) ∈ [0, 10] for the SP model and additionally t
(s)
2 ∈

[t, t+ 150cm] and ρ
(s)
2 ∈ [0, 2] for the TP model.

While MCMC is fast enough to perform offline exper-

iments it is not suitable for realtime operation. We now

describe how we achieve realtime performance.

4. Realtime Inference

For realtime inference we use an expensive offline pre-

processing step and a cheap and efficient model at runtime.

This was first proposed for TOF imaging in [1] for the static

case. However, it is not clear that this approach extends to

the higher-dimensional problem of predicting depth from

multiple frames. In the offline step we repeatedly perform

the following:

1. We sample ~θ(1:S) and ~R(1:S) from the prior.

2. We perform MCMC to obtain the posterior mean

θ̂(1:S)(~R(1:S)).

3. We store the pair (~R(1:S), t(S)), where t(S) is the most

recent depth estimate.

By repeating this procedure we collect a large number (sev-

eral millions) of inference inputs and outputs. We then train

a least squares regression tree [5] model f on a quadratic

feature expansion of ~R(1:S) to predict the scalar t(S).

At runtime we observe a response ~R(1:S) for each pixel

and evaluate the tree f(~R(1:S)) to estimate depth.

As noted in [1], regression trees are a good choice for a

regression mechanism for several reasons. First, they scale

well with the number of features. The dimensionality of

our feature vector is linear in the number of frames S we

use and hence this scaling is important. In addition, there

exist power-efficient hardware implementations of regression

trees suitable for mobile devices [36].
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Figure 5: Validation of the regression tree approximation: a

single tree of sufficient depth is expressive enough to repre-

sent the slow but accurate depth inference function. (a) the

cumulative distribution function of absolute errors; (b) the

same data broken down as a function of the true depth.

4.1. Evaluation Results

Because the tree model f is trained on the output of the

MCMC inference it can at most match its depth accuracy.

We now empirically study the approximation quality.

To this end we generate test data using the same offline

procedure used during training of the trees. Using the test

data we then compare the MCMC inferred depth against the

fast regression trees. From the results in Figure 5 we can

see that trees of depth 16 essentially match the predictive

performance of the MCMC depth.

The efficiency of our regression trees is very high (8 ·
106 pixels/s). With this efficient runtime, we now consider

designing a good time-of-flight measurement sequence.

5. Dynamic Sensing Design

The per-pixel response ~R(s) measured in the s’th frame

depends on two inputs. First, beyond our control, it depends

on the imaging conditions at the corresponding surface patch,

modelled by ~θ(s). Second, within our control, it depends on a

measurement design, that determines the idealized response

curve ~C and the ambient vector ~A.

The measurement design of a single frame is described

through a parametrization Z ∈ Z . We provide further details

on the parametrization below. To show in notation that each

frame can have a different design we write Z(s) for the

design of the s’th frame. We write the response curve as
~C(s) and the ambient vector as ~A(s) were the superscript

denotes the implicit dependence on Z(s).

Because we control this design, we are free to actively

select a different design Z(s) for each frame. We are going

to argue that for a new frame we should select a design that

is different to the design used in earlier frames. Instead

of directly requiring designs to differ, we start from the

principle that a measurement sequence should reveal on

average the largest amount of information about a scene.

To this end, we extend the Bayesian experimental design

procedure originally proposed in [1] from the single frame

case to the multi-frame setting.

In order to discuss the design problem we first describe

the set of possible measurement sequences.

5.1. Design Space

We adopt the same the design space used in [1] and now

give a short summary. In each capture period a fixed number

L of laser pulses are emitted, typically several thousand. For

each pulse we can choose how to integrate the reflected sig-

nal by selecting a specific time delay and a specific exposure

time, both on the order of nanoseconds. Both the set of

feasible time delays and feasible exposure times are finite

sets and the product set determines all B possible ways a

single emitted pulse can be measured. For each pulse the

reflected light is accumulated into one of the (four, in our

camera) coordinates of the response vector ~R.

Therefore, a design for a single frame can be represented

as an integer-valued matrix Z ∈ N
4×B with

∑

j

∑

i Zij =
L. In addition there are hardware related constraints regard-

ing the number of different delays and exposure times that

can be used of the form
∑

j 1Zij>0 ≤ w, for all i. Altogether

we summarize these constraints as Z ∈ Z .

The dynamic model uses the same design space applied to

each frame, that is, we simply have individually Z(s) ∈ Z .

5.2. Dynamic Design Problem

Like the work of [1] we base the design objective on

the principle of Bayesian experimental design and deci-

sion theory [9, 4]: a design is good if it leads to good

expected depth accuracy. Formally we assume a loss func-

tion ℓ(~θ(1:S), θ̂(~R(1:S))) which quantifies prediction error

given the ground truth ~θ(1:S) and a point estimate θ̂(~R(1:S)).
We use the sum of absolute depth errors of the last frame

ℓ = |t(S) − t̂(S)|, ignoring estimates in the other imag-

ing conditions. The design Z(1), . . . , Z(S) will be operated

cyclically, as shown in Fig. 1b. Therefore, to measure per-

formance we take the average across all cyclical rotations

J ∈ J of which there are S. For example, with S = 2 this

would be (Z(1), Z(2)) and (Z(2), Z(1)). We solve

min
Z∈Z

1
S

∑

J∈J

E~θJ(1:S) E~RJ(1:S)

[

ℓ(~θJ(1:S), θ̂(~RJ(1:S)))
]

, (22)

where the first expectation is over the prior distribution (Sec-

tion 3.1), and the second expectation is over the forward

model P (~RJ(1:S) | ~θJ(1:S)) (Section 3).

Optimization of (22) is challenging but fortunately we

found that the simulated annealing approach proposed in [1]

for the static model extends readily to the dynamic case and

we can find good local optima within several hours.

5.3. Optimization Results

We design a measurement sequence for two frames (S =
2) by minimizing (22) using 20,000 simulated annealing
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Figure 6: Designed response curve for the 2F-TP model. The

solid lines correspond to the first four responses captured in

the first frame; the dashed lines correspond to the second

four responses captured in the most recent frame. (a) eight

response curves with the 1/t2 depth decay, as the sensor

will observe; (b) the same curves but multiplied with t2 for

visualizing the structure over the full depth range.

iterations on a basis set of B = 3193 delay/exposure pairs

(103 possible delays, 31 exposures).

We show the resulting design in Figure 6. From Figure 6b

it is clear that the response curves corresponding to the first

frame (solid lines) are different to the curves of the second

frame (dashed lines). We study the effect of this difference

further in Section 6.2.

6. Experiments and Results

In the experiments we will validate the key contribution

of using information from multiple time steps by showing

improved depth accuracy. We demonstrate our proposed

method for the case S = 2 because this is the simplest case

where we use measurements from multiple time steps.

In all experiments we name the methods as 1F for the

case S = 1 and 2F for the case S = 2. The SP model (2) is

used in the 1F-SP and 2F-SP models, and the TP model (6)

is used in the 1F-TP and 2F-TP models.

All known TOF depth methods use only IR frames from a

single time step. To provide a fairer comparison we propose

a simple baseline method that also makes use of previously

captured frames. This baseline method works as follows:

we perform depth inference using the 1F-SP or 1F-TP mod-

els for each frame individually, but then average the depth

output. This is likely to work well if the camera is static or

moves very slowly. We call this resulting method SP-avg or

TP-avg, depending on whether we use the 1F-SP or 1F-TP

method to do per-frame depth inference.

6.1. In­Model Validation

We validate the model as follows: we sample observations

from the 2F-TP model, then use all possible four models and

two baseline methods to infer depth. By construction the

model assumptions are satisfied for the 2F-TP model and it

should outperform the other methods. We also include the

1F-SP and 2F-SP models for comparison.

We show results in Table 1 and there are two observations

to make: first, the TP model outperforms the SP model in

Absolute error quantile (cm)

Model 25% 50% 75%
Static 1F-SP 3.57 9.20 23.29

Baseline SP-avg 4.21 9.90 21.50

Dynamic 2F-SP (ours) 3.28 7.78 16.82

Static 1F-TP 2.55 6.79 21.70

Baseline TP-avg 2.87 7.26 18.69

Dynamic 2F-TP (ours) 2.56 6.16 14.48

Table 1: In-model validation: we sample observations from

the 2F-TP prior and use four different models to explain the

observations. Consistently, the use of observations from two

frames improves the performance, in particular the worst

quarter of errors (the 75% quantile) are reduced.

all settings. Second, the dynamic 2F-TP model performs

best for the medium and large error pixels: the static 1F-TP

model has a 50 percent larger error for the 75% quantile

and a 10 percent larger error for the median error. This

demonstrates synthetically that the dynamic models (2F-SP

and 2F-TP) can improve depth accuracy.

6.2. Dynamic Measurement Design Validation

In Section 5.2 we described a design procedure taking

into account temporal dependencies. We now verify exper-

imentally that by using a complementary design over time

we obtain improved depth accuracies.

For this experiment, we take the 2F-TP design Z shown in

Figure 6. We take the four response curves from the second

frame and duplicate these to obtain an additional design Z ′

for the 2F-TP model that uses identical response curves for

the first and second frames.

We simulate ~θ
(1:S)
i ∼ P (~θ(1:S)), i = 1, . . . , 2048 from

the 2F-TP prior, then create two sets of response vectors

by simulating the forward model, once for the design Z
and once for Z ′. We then perform posterior inference using

the 2F-SP and 2F-TP models and compare depth accuracy

against the known ground truth.
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Figure 7: Dynamic design

versus static design.

The results are shown as

box plots in Figure 7. The

2F-SP and 2F-TP boxes use

the complementary design Z,

whereas the 2F-SP-rep and 2F-

TP-rep boxes use the repli-

cated design Z ′. The comple-

mentary design (“2F-SP” and

“2F-TP”) has a better depth ac-

curacy in terms of the median

absolute depth error and also

significantly better 75% quantile error compared to 2F-SP-

rep and 2F-TP-rep, where we use the two frame model on

the static design.

This confirms that the design objective selects a measure-

ment design in such a way as to beneficially use and integrate

information from both the current and past frames.
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Figure 8: Box plots showing the absolute depth errors on five simulated scenes. Our main findings: 1. Our proposed dynamic

models (2F-*) improve over the static models (1F-*) at the 25/50/75 quantiles. 2. We also improve over the baseline two frame

methods (*-avg) and the spatio-temporal averaging (*-sp), (*-sp+t).

6.3. Rendering Simulations

We now study the performance of the proposed method

using the light transport simulation approach of [1]. We

use the modified physically-based renderer Mitsuba [20]

from [1] to simulate realistic responses containing both direct

and multipath components, while maintaining the ability to

have ground truth depth. We use five scenes, in which we

use approximate handheld camera motion trajectories. We

then perform depth inference using our different models and

compare the inferred depth against the ground truth depth

using the median absolute error.

We compare against three baseline methods based on

spatio-temporal filtering. In contrast to RGB images it is

not possible to temporally filter RAW images because the

measurement patterns are different over time. However,

it is possible to filter depth output and we use the guided

filter [19] using the depth image as guide image. We created

three baselines: 1F-TP-sp, a spatial-filtered depth map from

the 1F-TP method; 1F-TP-sp+t, a spatio-temporal-filtering of

the two most recent depth outputs, using the guided filter on

a (width, height, 2) depth map tensor as in video denoising;

2F-TP-sp, a spatial-filtered depth map from the 2F-TP depth

output. We optimize the guided filter parameters (radius and

regularizer) to minimize the median abs error against the

ground truth for each method.

Fig. 8 shows the results in the form of box plots (25/50/75

percentiles) for all five scenes and all methods. These results

demonstrate the robustness of the 2F-TP model compared

to all other methods: the highest errors (75 percentile) are

consistently reduced across scenes, and in four out of five

scenes the median error is the lowest. With respect to the

single-frame methods we get a reduction of error because

we use more data. While a simple baseline temporal averag-

ing may sometimes work, we see that the behaviour of the

these methods (SP-avg and TP-avg) is variable across scenes

depending on the amount of motion/depth-discontinuities

present. Our method is robust and performs well across all

scenes. In addition we note that the two-path models (*-TP)

fare better than the single-path (*-SP) models.

Regarding the spatio-temporal baselines, the results show

wheras spatial filtering improves every method, temporal
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Figure 10: Box plots comparing depth accuracy of our robust

motion model (2F-SP, 2F-TP) against a standard non-robust

motion model (2F-SP-nr, 2F-TP-nr, corresponding to ω = 0).

For large motion (ω = 0.25, ω = 0.5) the robust models still

work, whereas the non-robust standard motion model fails.

filtering on the depth is largely ineffective. Our method

of temporal inference on the RAW frames combined with

spatial filtering (2F-TP-sp) is the most effective.

For visual inspection of the effects of the motion model

we show a representative improvement of the 2F-TP model

over the 1F-TP model in Figure 9.

6.4. Robustness of the Motion Model

Our motion model (10) is robust because it has the fall-

back option of reverting to an independent prior, ignoring

past information. Whether this construction is successful

depends on how robustly this switching is performed.

In a first experiment we show that a non-robust analogue

of our model, corresponding to the choice ω = 0 in (10)

fails in the presence of depth discontinuities. To this end

we sample from a 2F-TP prior with various choices of ω ∈
{0.05, 0.25, 0.5} corresponding roughly to small, medium,

and strong motion. We then perform depth inference on the

sampled responses using either our robust models, 2F-SP

and 2F-TP, or using the non-robust models 2F-SP-nr and

2F-TP-nr where we set ω = 0 so that only Q(~θ(s+1)|~θ(s)) is

used. The results in Figure 10 confirm the usefulness of the

mixture construction (10).

To further study the robustness of the motion model we

perform the following experiment. Like in Section 6.3 we

simulate a pair of frames and perform inference using ei-

ther the 2F-SP or the 2F-TP model, using 16384 MCMC

iterations for burn-in and inference, each. We visualize the

belief of the model that a pixel can be explained using the
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Figure 9: Visual comparison of Bayes 1F-TP and Bayes 2F-TP errors: we can observe a significant error reduction in areas

with strong multipath (corner, floor) throughout the whole scene. (Scene “Country Kitchen” by Jay-Artist, CC-BY)
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Figure 11: Robust change detection by the dynamic model.

local motion model Q in equation (10). To this end we

compute a motion map statistic M for each pixel, where

0 ≤ M ≤ 1, with a value close to one if the local motion

model Q explains the observed response (more details in

the supplementary). We expect most of the image to be

explainable this way, with exceptions along depth edges.

We visualize the results for one scene in Figure 11. In

Figure 11a we show the absolute ground truth difference in

depth for two adjacent frames. In Figure 11b and 11c we

show the inferred motion maps for the 2F-SP and the 2F-TP

models. Indeed, the 2F-SP model and even more so the 2F-

TP model are able to robustly separate the image into two

classes: pixels where a slowly changing depth is observed

(in yellow), and pixels where there is an abrupt change in

depth (in blue). For pixels undergoing abrupt depth changes

the model reverts to explaining the response through the

independent prior beliefs. Hence (10) is a robust prior.

6.5. Live Demonstration

We run our 2F regression trees on sequences captured

by a pulsed TOF camera similar to the one in [1], using

designed measurement patterns. We show live results in a

supplementary video and document.

7. Related Work

Motion compensation methods for phase-based time-of-

flight [15] either require properties specific to phase-based

TOF or optical flow. More generally, temporal denoising

of depth images has been considered in [21, 29, 7, 24]. In

these works explicit or implicit motion compensation is per-

formed, using additional input from an accompanying RGB

camera. In particular, structured light RGB-D data has been

enhanced temporally as well as spatially in [21] using a joint

bilateral filter together with a motion-compensated temporal

filter, requiring 2 seconds per frame. Likewise the heuristic

proposed in [29] enhanced RGB-D data spatio-temporally,

achieving 1.4 frames per second and similarly the heuristic

spatio-temporal filter in [24] takes more than ten seconds per

frame. Our spatio-temporal filtering baseline is representa-

tive of these approaches. [37] proposes a Markov random

field for spatio-temporal denoising. This model assumes a

static camera and requires one seconds per frame. In contrast,

our work does not use an additional RGB input and we do

not assume a static camera but achieve realtime performance.

Recent work [32, 31, 30] performs 3D scene reconstruc-

tion from depth data over long temporal periods. These

schemes are based on aligning the 3D point clouds of each

depth frame, and integrating these in a common 3D scene

representation. A key limitation of these methods is the re-

liance on depth as input: for low-reflectivity surfaces or in

when strong ambient light is present the depth reconstruction

may fail and these methods cannot be applied. Our approach

is complementary because we integrate RAW IR responses

temporally to improve depth output, which can serve as input

to geometric scene reconstruction methods.

Our design of active sensing sequences resembles the goal

of classic active vision systems [2] to sense optimal infor-

mation relative to information already collected. Structured

light systems have used acquisition patterns designed to min-

imize ambiguity and to maximize spatial resolution [35].

Furthermore, 3D scanning based on phase-shift based active

illumination has leveraged models of motion to compensate

for motion artifacts [41]. Closest to our approach is the

recent information gain based adaptive structured light ap-

proach of [34]. Like in our approach a coherent probabilistic

model is combined with decision theory in order to acquire

information that maximizes future expected utility.

8. Conclusion

We proposed a procedure for temporal sensing and in-

tegration of time-of-flight RAW observations. We achieve

realtime performance and robust improved depth accuracy.

We believe that we made a first step to leverage the inter-

nal operation of time-of-flight cameras to more intelligently

capture and integrate environment information.
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