
Jan Stühmer, Richard E. Turner, Sebastian Nowozin

A Appendix

A.1 Sampling from Lp-nested Symmetric
Distributions

We reproduce the sampling algorithm for Lp-nested
symmetric distributions from Sinz and Bethge (2010)
in Alg. 1.

Input : The radial distribution ψ0(v0) of an
Lp-nested symmetric distribution pLp for
the Lp-nested function f

Output : Sample x from pLp

1. Sample v0 from a beta distribution β[n, 1]

2. For each inner node i of the tree associated with
f , sample the auxiliary variable si from a

Dirichlet distribution Dir
[
ni,1
pi
, . . . ,

ni,l1
pi

]
where

ni,k are the number of leaves in the subtree under
node i, k. Obtain coordinates on the Lp-nested
sphere within the positive orthant by

si 7→ s
1
pi
i = ũi (the exponentiation is taken

component-wise)

3. Transform these samples to Cartesian coordinates
by vi · ũi = vi,1:li for each inner node, starting
from the root node and descending to lower
layers. The components of vi,1:li constitute the
radii for the layer direct below them. If i = 0, the
radius had been sampled in step 1

4. Once the two previous steps have been repeated
until no inner node is left, we have a sample x
from the uniform distribution in the positive
quadrant. Normalize x to get a uniform sample
from the sphere u = x

f(x)

5. Sample a new radius ṽ0 from the radial
distribution of the target radial distribution ψ0

and obtain the sample via x̃ = ṽ0 · u

6. Multiply each entry xi of x̃ by and independent
sample zi from the uniform distribution over
{−1, 1}.

Algorithm 1: Exact sampling algorithm for Lp-
nested symmetric distributions from Sinz and
Bethge (2010)

A.2 Learned Exponents

An interesting question when learning the exponents
of the prior is, if the trivial case is learned, in which all
the exponents become equal to p0. This implies a fully
factorized prior over all latent variables. To explore
this we set p0 = 2.1 and initialize the exponents of the

Table 1: Hyperparameters of FactorVAE, β-VAE,
β-TCVAE, and ISA-VAE evaluated on the dSprites
dataset. We evaluated each model on the whole range
of regularization strength parameters. (γ for Factor-
VAE and β for the other models)

Parameter Values
β [1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6]
γ (FactorVAE) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Epochs 20
Learning Rate 0.001
Batch Size 2048
Latent dimension 20
Loss function Bernoulli
Optimizer Adam

Table 2: Hyperparameters of β-VAE, β-TCVAE, and
ISA-VAE evaluated on the 3D faces dataset (Paysan
et al., 2009). We evaluated each model on the whole
range of regularization strength parameters.

Parameter Values
β [1, 1.5, 2, 2.5, 3, 4]
Epochs 1500
Learning Rate 0.001
Batch Size 2048
Latent dimension 10
Loss function Bernoulli
Optimizer Adam

subspaces to p1,...,3 = 2.0. We train 15 models for each
value of β ∈ {0.5, 1.0, 2.0, 3.0, 4.0, 5.0}. Fig. 7 depicts
histograms of the learnt exponents, where we sort the
exponents such that p1 < p2 < p3. Interestingly, the
exponents with highest frequency are 1.95 for p1, 1.98
for p2, and 2.17 for p3. Also, all values of p3 are strictly
larger than 2.17, meaning that these exponents are
also always different from p0. This small deviation
from the Gaussian with p = 2.0 seems to be sufficient
to break symmetry and produce a more structured
representation.

A.3 Hyperparameters

The hyperparameters that we use for the experiments
on the dSprites dataset can be found in table 1, and
the hyperparameters for the experiments on the 3D
faces dataset in table 2.

A.4 Model Architecture (PyTorch)

The models were trained with the optimization algo-
rithm Adam (Kingma and Ba, 2015) using a learning
rate parameter of 0.001
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(b) Histogram of p2.
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(c) Histogram of p3.

Figure 7: Histogram of learned exponents on the 3d faces dataset. To identify the different subspaces we choose
the ordering p1 < p2 < p3.

All unmentioned hyperparameters are PyTorch v0.41
defaults.

c l a s s MLPEncoder (nn . Module ) :
de f i n i t ( s e l f , output dim ) :

super (MLPEncoder , s e l f ) . i n i t ( )
s e l f . output dim = output dim

s e l f . f c 1 = nn . Linear (4096 ,1200)
s e l f . f c 2 = nn . Linear (1200 ,1200)
s e l f . f c 3 = nn . Linear (1200 , output dim )

s e l f . conv z=nn . Conv2d (64 , output dim , 4 , 1 , 0 )

s e l f . act = nn .ReLU( i n p l a c e=True )

de f forward ( s e l f , x ) :
h = x . view (−1 , 64 ∗ 64)
h = s e l f . act ( s e l f . f c 1 (h ) )
h = s e l f . act ( s e l f . f c 2 (h ) )
h = s e l f . f c 3 (h)
z = h . view ( x . s i z e ( 0 ) , s e l f . output dim )
return z

c l a s s MLPDecoder (nn . Module ) :
de f i n i t ( s e l f , input dim ) :

super (MLPDecoder , s e l f ) . i n i t ( )
s e l f . net = nn . Sequent i a l (

nn . Linear ( input dim , 1200) ,
nn . Tanh ( ) ,
nn . Linear (1200 , 1200) ,
nn . Tanh ( ) ,
nn . Linear (1200 , 1200) ,
nn . Tanh ( ) ,
nn . Linear (1200 , 4096)

)

de f forward ( s e l f , z ) :
h = z . view ( z . s i z e ( 0 ) , −1)
h = s e l f . net (h)
mu img = h . view ( z . s i z e ( 0 ) , 1 , 64 , 64)
re turn mu img

Architecture of the encoder and decoder which is iden-
tical to the architecture in Chen et al. (2018).

c l a s s Di sc r iminator (nn . Module ) :
de f i n i t ( s e l f , z dim ) :

super ( Discr iminator , s e l f ) . i n i t ( )
s e l f . net = nn . Sequent i a l (

nn . Linear ( z dim , 1000) ,
nn . LeakyReLU ( 0 . 2 , True ) ,
nn . Linear (1000 , 1000) ,
nn . LeakyReLU ( 0 . 2 , True ) ,
nn . Linear (1000 , 1000) ,
nn . LeakyReLU ( 0 . 2 , True ) ,
nn . Linear (1000 , 1000) ,
nn . LeakyReLU ( 0 . 2 , True ) ,
nn . Linear (1000 , 1000) ,
nn . LeakyReLU ( 0 . 2 , True ) ,
nn . Linear (1000 , 2 ) ,

)

de f forward ( s e l f , z ) :
r e turn s e l f . net ( z ) . squeeze ( )

Architecture of the discriminator of FactorVAE.

A.5 Disentangled Representations and
Latent Traversals

We use the plotting technique established in Chen et al.
(2018) for visualizing latent representations and addi-
tionally show images generated by traversals of the la-
tent along the respective axis. The red and blue colour
coding in the first column denotes the value of the latent
variable for the respective x,y-coordinate of the sprite
in the image. Coloured lines indicate the object shape
with red for ellipse, green for square, and blue for heart.
We observed that the MIG scores after training are
usually bimodal: Either a model disentangles well or it
does not reach a good MIG score. Therefore, to choose
a representative model for each model class we take
the average of the upper 50% quantile of MIG scores
and choose a representative model that minimizes the
mahalanobis distance, defined by mean and variance
of MIG score and reconstruction loss. ISA-layout:
ISA-VAE: l0 = 5, l1,...,5 = 5, p0 = 2.1, p1,...,5 = 2.2.
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(a) β-VAE, β = 1.0, MIG: 0.14, logpx : −21.99
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(b) ISA-VAE, β = 1.0, MIG: 0.20, logpx: −20.93

Figure 8: Disentangled representations for representative models of the upper quantile of MIG scores for β-VAE
(identical with β-TCVAE for β = 0) and ISA-VAE (ISA-TCVAE identical for β = 0) and latent traversals for the
ellipse shape.
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(a) β-VAE, β = 1.0, MIG: 0.14, logpx : −21.99
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(b) ISA-VAE, β = 1.0, MIG: 0.20, logpx: −20.93

Figure 9: Disentangled representations for representative models of the upper quantile of MIG scores for β-VAE
(identical with β-TCVAE for β = 0) and ISA-VAE (ISA-TCVAE identical for β = 0) and latent traversals for the
square shape.
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(a) β-VAE, β = 1.0, MIG: 0.14, logpx : −21.99
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(b) ISA-VAE, β = 1.0, MIG: 0.20, logpx: −20.93

Figure 10: Disentangled representations for representative models of the upper quantile of MIG scores for β-VAE
(identical with β-TCVAE for β = 0) and ISA-VAE (ISA-TCVAE identical for β = 0) and latent traversals for the
heart shape.
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(a) β-VAE, β = 2.0, MIG: 0.28, logpx: −29.40
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(b) β-TCVAE, β = 2.0, MIG: 0.30, logpx: −27.15
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(c) ISA-VAE, β = 2.0, MIG: 0.41, logpx: −25.86

Figure 11: Disentangled representations for models representative for the upper quantile of MIG scores for β = 2.0
for β-VAE, β-TCVAE, ISA-VAE and ISA-TCVAE and latent traversals for the ellipse shape.
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(a) β-VAE, β = 2.0, MIG: 0.28, logpx: −29.40

sc
al

e
x
-p

os
ro

ta
ti

on
y
-p

os
ro

ta
ti

on

(b) β-TCVAE, β = 2.0, MIG: 0.30, logpx: −27.15
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(c) ISA-VAE, β = 2.0, MIG: 0.41, logpx: −25.86

Figure 12: Disentangled representations for models representative for the upper quantile of MIG scores for β = 2.0
for β-VAE, β-TCVAE, ISA-VAE and ISA-TCVAE and latent traversals for the square shape.
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(a) β-VAE, β = 2.0, MIG: 0.28, logpx: −29.40
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(b) β-TCVAE, β = 2.0, MIG: 0.30, logpx: −27.15
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(c) ISA-VAE, β = 2.0, MIG: 0.41, logpx: −25.86

Figure 13: Disentangled representations for models representative for the upper quantile of MIG scores for β = 2.0
for β-VAE, β-TCVAE, ISA-VAE and ISA-TCVAE and latent traversals for the heart shape.
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(a) β-VAE, β = 3.0, MIG: 0.47, logpx : −33.44
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(b) β-TCVAE, β = 3.0, MIG: 0.43, logpx: −33.40
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(c) ISA-VAE, β = 3.0, MIG: 0.48, logpx: −32.42

Figure 14: Disentangled representations for models representative for the upper quantile of MIG scores for β = 3.0
for β-VAE, β-TCVAE, ISA-VAE and ISA-TCVAE and latent traversals for the ellipse shape.
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(a) β-VAE, β = 3.0, MIG: 0.47, logpx : −33.44
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(c) ISA-VAE, β = 3.0, MIG: 0.48, logpx: −32.42

Figure 15: Disentangled representations for models representative for the upper quantile of MIG scores for β = 3.0
for β-VAE, β-TCVAE, ISA-VAE and ISA-TCVAE and latent traversals for the square shape.
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(a) β-VAE, β = 3.0, MIG: 0.47, logpx : −33.44
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(c) ISA-VAE, β = 3.0, MIG: 0.48, logpx: −32.42

Figure 16: Disentangled representations for models representative for the upper quantile of MIG scores for β = 3.0
for β-VAE, β-TCVAE, ISA-VAE and ISA-TCVAE and latent traversals for the heart shape.
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B Toy examples showing biases in
Variational Inference and
β-Variational Inference

This section provides the details of the toy examples
that reveal the biases in variational methods.

First we will consider the factor analysis model showing
that Variational Inference (VI) breaks the degeneracy
of the maximum-likelihood solution to 1) discover or-
thogonal weights that lie in the PCA directions, 2)
prune out extra components in over-complete factor
analysis models, even though there are solutions with
the same likelihood that preserve all components. We
also show that in these examples the β-VI returns
identical model fits to VI regardless of the setting of β.

Second, we consider an over-complete ICA model and
initialize using the true model. We show that 1) VI
is biased away from the true component directions to-
wards more orthogonal directions, and 2) β-VI with a
modest setting of β = 5 prunes away one of the compo-
nents and finds orthogonal directions for the other two.
That is, it finds a disentangled representation, but one
which does not reflect the underlying components.

B.1 Background

The β-VAE optimizes the modified free-energy,
Fβ(q(z1:N ), θ), with respect to the parameters θ and
the variational approximation q(z1:N ),

Fβ(q(z1:N ), θ) =Eq(z1:N )(log p(x1:N |z1:N , θ))
− βKL(q(z1:N )||p(z1:N )). (13)

Consider the case where M = 1
β is a positive integer,

M ∈ N, we then have

Fβ(q(z1:N ), θ) =

N∑
n=1

[
Eq(zn)(M(β) log p(xn|zn, θ))

−KL(q(zn)||p(zn))
]

In this case, the β-VAE can be thought of as attaching
M replicated observations to each latent variable zn
and then running standard variational inference on
the new replicated dataset. This can equivalently be
thought of as raising each likelihood p(xn|zn, θ) to the
power M .

Now in real applications β will be set to a value that
is greater than one. In this case, the effect of β is the
opposite: it is to reduce the number of effective data
points per latent variable to be less than one M < 1.
Or equivalently we raise each likelihood term to a power
M that is less than one. Standard VI is then run on
these modified data (e.g. via joint optimization of q
and θ).

Although this view is mathematically straightforward,
the perspective of the β-VAE i) modifying the dataset,
and ii) applying standard VI, is useful as it will allow
us to derive optimal solutions for the variational dis-
tribution q(z) in simple cases like the factor analysis
model considered next.

B.2 Factor analysis

Consider the factor analysis generative model. Let
x ∈ RL and z ∈ RK .

for n = 1...N

zn ∼ N (0, I), (14)

xn ∼ N (Wzn, D) where D = diag([σ2
1 , ..., σ

2
D])

The true posterior is a Gaussian p(zn|xn, θ) =
N (z;µz|x,Σz|x) where

µz|x = Σz|xW
>D−1x (15)

and Σz|x = (W>D−1W + I)−1.

The true log-likelihood of the parameters is

log p(x1:N |θ) =

N∑
n=1

logN (xn,0,WW> +D)

= − N

2
log det(2π(WW> +D))

− 1

2

N∑
n=1

x>n (WW> +D)−1xn

= − 1

2
N
[

log det(2π(WW> +D))

+ trace((WW> +D)−1(µxµ
>
x + Σx))

]
Here we have defined the empirical mean and co-
variance of the observations µx = 1

N

∑N
n=1 xn and

Σx = 1
N

∑N
n=1(xn − µx)(xn − µx)> i.e. the sufficient

statistics.

The likelihood is invariant under orthogonal transforma-
tions of the latent variables: z′ = Rz where RR> = I.

Interpreting β-VI as running VI in a modified gener-
ative model (see previous section) we have the new
generative process

for n = 1...N

zn ∼ N (zn; 0, I),

for m = 1...M(β)

xn,m ∼ N (Wzn, D) where D = diag([σ2
1 , ..., σ

2
D])

We now observe data and set xn,m = xn.
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Figure 17: Latent traversals on the cars3d dataset (Reed et al., 2015), columns correspond to individual latent
dimensions, rows are traversals along the respective latent component. Across different shapes of cars, the latent
variables consistently encode features such as azimuth (8th column), elevation (15th column), and color (e.g.
column 13 and 17). Traversals generated with the disentanglement lib implementation of Locatello et al. (2019).



Independent Subspace Analysis for Unsupervised Learning of Disentangled Representations

The posterior is again Gaussian p(zn|xn, θ,M(β)) =
N (zn; µ̃z|x(β, n), Σ̃z|x(β)) where

µ̃z|x(β, n) = Σ̃−1z|x(β)M(β)W>D−1xn

and Σ̃z|x(β) = (M(β)W>D−1W + I)−1

Here we have taken care to explicitly reveal all of the
direct dependencies on β.

Mean-field variational inference, q(zn) =
∏
k qn,k(zk,d),

will return a diagonal Gaussian approximation to the
true posterior with the same mean and matching diag-
onal precision,

q(zn|xn, θ,M(β)) = N
(
zn; µ̃z|x(β, n),Σq(β)

)
,

where Σ−1q (β) = diag
(

Σ̃−1z|x(β)
)

We notice that the posterior mean is a linear combi-
nation of the observations µ̃z|x(β, n) = R(β)xn where

R(β) = Σ̃z|x(β)M(β)W>D−1 are recognition weights.
Notice that the recognition weights and the posterior
variances are the same for all data points: they do not
depend on n. The free-energy is then

F(q, θ, β) = Eq(z)(log p(x|z))−KL(q(z)|p(z))
with the reconstruction term being

Eq(z)(log p(x|z)) =

=− 1

2β

N∑
n=1

x>n (D−1 − 2R>W>D−1

+R>W>D−1WR)xn

− N

2β
log det(2πD)− N

2β
trace(W>D−1Σq)

=− N

2β

(
trace

(
(D−1 − 2R>W>D−1

+R>W>D−1WR)(Σx + µxµ
>
x )
)

+ log det(2πD) + trace(W>D−1WΣq)

)
(16)

and the KL or regularization term being

KL(q(z)|p(z)) =

=− NK

2
− N

2
log det(Σq) +

N

2
trace(Σq)

+
1

2

N∑
n=1

x>nR
>Rxn

=− N

2

(
K + log det(Σq)− trace(Σq)

− trace(R>R(Σx + µxµ
>
x ))
)
.

We will now consider the objective functions and the
posterior distributions in several cases to reason about
the parameter estimates arising from the methods
above.

B.3 Experiment 1: mean field VI applied to
factor analysis yields the PCA directions

Consider the situation where we know a maximum like-
lihood solution of the weights WML. For simplicity we
select the solution WML which has orthogonal weights
in the observation space. We then rotate this solu-
tion by an amount θ so that W ′ML = R(θ)WML. The
resulting weights are no longer orthogonal (assuming
the rotation is not an integer multiple of π/2). We
compute the log-likelihood (which will not change) and
the free-energy (which will change) and plot the true
and approximate posterior covariance (which does not
depend on the datapoint value xn).

First here are the weights are aligned with the true
ones. The log-likelihood and the free-energy take the
same value of -17.82 nats.
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Second, here are the weights rotated π/4 and the log-
likelihood is -17.82 nats and the free-energy -57.16 nats.
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When varying the rotation away fom the orthogonal
setting, θ, the plots above indicate that orthogonal set-
tings of the weights (θ = mπ/2 where m = 0, 1, 2, ...)
lead to factorized posteriors. In these cases the KL be-
tween the approximate posterior and the true posterior
is zero and the free-energy is equal to the log-likelihood.
This will be the optimal free-energy for any weight
setting (due to the fact that it is equal to the true log-
likelihood which is maximal, and the free-energy is a
lower bound of this quantity.) For intermediate values
of θ the posterior is correlated and the free-energy is
not tight to the log likelihood.

Now let’s plot the free-energy and the log-likelihood
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as θ is varied. This shows that the free-energy prefers
orthogonal settings of the weights as this leads to fac-
torized posteriors, even though the log-likelihood is
insensitive to θ. So, variational inference recovers the
same weight directions as the PCA solution.
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The above shows that the bias inherent in variational
methods will cause them to break the symmetry in the
log-likelihood and find orthorgonal latent components.
This occurs because orthoginal components result in
posterior distributions that are factorized. These are
then well-modelled by the variational approximation
and result in a small KL between the approximate and
true posteriors.

B.4 Experiment 2: mean field VI applied to
over-complete factor analysis prunes out
the additional latent dimensions

A similar effect occurs if we model 2D data with a
3D latent space. Many settings of the weights attain
the maximum of the likelihood, including solutions
which use all three latent variables. However, the
optimal solution for VI is to retain two orthogonal
components and to set the magnitude of the third
component to zero. This solution a) returns weights
that maximise the likelihood, and b) has a factorised
posterior distribution (the pruned component having
a posterior equal to its prior) that therefore incurs no
cost KL(q(z)||p(z|x, θ)) = 0. In this way the bound
becomes tight.

Here’s an example of this effect. We consider a model
of the form:

x =
α√
2

[
1
1

]
z1 +

β√
2

[
1
1

]
z2 +

ρ√
2

[
1
−1

]
z3 + ε

(17)

We set α2 + β2 = 1 so that all models imply the same
covariance and set this to be the maximum likelihood
covariance by construction. We then consider varying
α from 0 to 1/2. The setting equal to 0 attains the
maximum of the free-energy, even though it has the
same likelihood as any other setting.
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B.5 Experiment 3: The β-VAE also yields
the PCA components, changing β has no
effect on the direction of the estimated
components in the FA model

How does the setting of β change things? Here we
rerun experiment 1 for different values of β.
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In this example, changing β in this example just reduces
the amplitude of the fluctuations in the free-energy,
but it does not change the directions found. A similar
observation applies to the pruning experiment.

Increasing β will increase the uncertainty in the poste-
rior as it is like reducing the number of observations (or
increasing the observation noise, from the perspective
of q).

B.6 Summary of Factor Analysis
Experiments

The behaviours introduced by the β-VAE appear rela-
tively benign, and perhaps even helpful, in the linear
case: VI is breaking the degeneracy of the maximum
likelihood solution in a sensible way: selecting amongst
the maximum likelihood solutions to find those that
have orthogonal components and removing spurious
latent dimensions. This should be tempered by the
fact that the β generalization recovered precisely the
same solutions and so it was necessary to obtain the
desired behaviour in the PCA case.

Similar effects will occur in deep generative models, not
least since these typically also have a Gaussian prior
over latent variables, and these latents are initially
linearly transformed, thereby resulting in a similar
degeneracy to factor analysis.

However, the behaviours above benefited from the fact
that maximum-likelihood solutions could be found in
which the posterior distribution over latent variables
factorized. In real world examples, for example in
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deep generative models, this will not be case. In such
cases, these same effects will cause the variational free-
energy and its β-generalization to bias the estimated
parameters far away from maximum-likelihood
settings, toward those settings that imply fac-
torized Gaussian posteriors over the latent vari-
ables.

B.7 Independent Component Analysis

We now apply VI and the β free-energy method to
ICA. We’re interested the properties of the variational
objective and the β-VI objective and so we 1. fit the
data using the true generative model to investigate the
biases in VI and β-VI 2. do not use amortized infer-
ence, just optimizing the approximating distributions
for each data point (this is possible for these small
examples).

The linear independent component analysis generative
model we use is defined as follows. Let x ∈ RL and
z ∈ RK .

for n = 1...N

for k = 1...K

zn,k ∼ Student-t(0, σ, v),

xn ∼ N (Wzn, D) where D = diag([σ2
1 , ..., σ

2
D])

We apply mean-field variational inference, q(zn) =∏
k qn,k(zk,d), and use Gaussian distributions for each

factor qn,k(zn,k) = N (zn,k;µn,k, σ
2
n,k).

The free-energy is computed as follows: The recon-
struction term is identical to PCA: an avergage of a
quadratic form wrt to a Gaussian, which is analytic.
The KL is broken down into the differential entropy
of q which is also analytic and the cross-entropy with
the prior which we evaluate by numerical integration
(finite differences). There is a cross-entropy term for
each latent variable which is one reason why the code
is slow (requiring N 1D numerical integrations). The
gradient of the free-energy wrt the parameters W and
the means and variances of the Gaussian q distributions
are computed using autograd.

In order to be as certain as possible that we are finding
a global maximum of the free-energies, all experiments
initialise at the true value of the parameters and then
ensure that each gradient step improves the free-energy.
Stochastic optimization or a procedure that accepted
all steps regardless of the change in the objective would
be faster, but they might also move us into the basis
of attraction of a worse (local) optima.

B.8 Experiment 1: Learning in
over-complete ICA

Now we define the dataset. We use a very sparse
Student’s t-distribtion with v = 3.5. For v < 4 the
the kurtosis is undefined so the model is fairly simple
to estimate (it’s a long way away from the degenerate
factor analysis case which is recovered in the limit
v →∞).

We use three latent components and a two dimensional
observed space. The directions of the three weights are
shown in blue below with data as blue circles.
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First we run variational inference finding components
(shown in red below) which are more orthogonal than
the true directions. This bias is in this directions as
this reduces the dependencies (explaining away) in the
underlying posterior.
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Second we run β-VI with β = 5. Two components are
now found that are orthogonal with one component
pruned from the solution.
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In this case the bias is so great that the true component
directions are not discovered. Instead the components
are forced into the orthogonal setting regardless of the
structure in the data.

B.9 Summary of Independent Component
Analysis experiment

The ICA example illustrates that this approach – of
relying on a bias inherent in VI to discover meaningful
components – will sometimes return meaningful struc-
ture (e.g. in the PCA experiments above). However it
does not seem to be a sensible way of doing so in general.
For example, explaining away often means that the true
components will be entangled in the posterior, as is
the case in the ICA example, and the variational bias
will then move us away from this solution. The β-VI
generalisation only enhances this undesirable bias.


