
Appendix for:
How Good is the Bayes Posterior in Deep Neural Networks Really?

Florian Wenzel * 1 Kevin Roth * + 2 Bastiaan S. Veeling * + 3 1 Jakub Świątkowski 4 + Linh Tran 5 +

Stephan Mandt 6 + Jasper Snoek 1 Tim Salimans 1 Rodolphe Jenatton 1 Sebastian Nowozin 7 +

Abstract
This document contains additional details and
derivations for the main ICML 2020 paper.

A. Model Details
We now give details regarding the models we use in all our
experiments. We use Tensorflow version 2.1 and carry out
all experiments on Nvidia P100 accelerators.

A.1. ResNet-20 CIFAR-10 Model

We use the CIFAR-10 dataset from (Krizhevsky et al., 2009),
in “version 3.0.0” provided in Tensorflow Datasets.1 We
use the Tensorflow Datasets training/testing split of 50,000
and 10,000 images, respectively.

We use the ResNet-20 model from https://keras.
io/examples/cifar10_resnet/ as a starting point.
For our SGD baseline we use the exact same setup as in the
Keras example (200 epochs, learning rate schedule, SGD
with Nesterov acceleration). Notably the Keras example
uses bias terms in all convolution layers, whereas some
other implementations do not.

The Keras example page reports a reference test ac-
curacy of 92.16 percent for the CIFAR-10 model,
compared to our 92.22 percent accuracy. This is con-
sistent with the larger literature, collected for example
at https://github.com/google/edward2/
tree/master/baselines/cifar10, with even
higher accuracy achieved for variations of the ResNet
model such as using wide layers, removing bias terms in

*Equal contribution +Work done while at Google 1Google
Research 2ETH Zurich 3University of Amsterdam 4University
of Warsaw 5Imperial College London 6University of California,
Irvine 7Microsoft Research. Correspondence to: Florian Wenzel
<florianwenzel@google.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

1See https://www.tensorflow.org/datasets/
catalog/cifar10

the convolution layers, or additional regularization.

In this paper we study the phenomenon of poor T = 1 poste-
riors obtained by SG-MCMC and therefore use an accurate
simulation and sampling setup at the cost of runtime. In
order to obtain accurate simulations we use the following
settings for SG-MCMC in every experiment, except where
noted otherwise:

• Number of epochs: 1500
• Initial learning rate: ` = 0.1
• Momentum decay: β = 0.98
• Batch size: |B| = 128
• Sampling start: begin at epoch 150
• Cycle length: 50
• Cycle schedule: cosine
• Prior: p(θ) = N (0, I)

For experiments on CIFAR-10 we use data augmentation as
follows:

• random left/right flipping of the input image;
• border-padding by zero values, four pixels in horizontal

and vertical direction, followed by a random cropping
of the image to its original size.

We visualize the cyclic schedule used in our ResNet-20
CIFAR-10 experiments in Figure 1.

A.2. ResNet-20 CIFAR-10 SGD Baseline

For the SGD baseline we follow the best practice from the
existing Keras example which was tuned for generalization
performance. In particular we use:

• Number of epochs: 200
• Initial learning rate: ` = 0.1
• Momentum term: 0.9
• L2 regularization coefficient: 0.002
• Batch size: 128
• Optimizer: SGD with Nesterov momentum
• Learning rate schedule (epoch, `-multiplier): (80, 0.1),

(120, 0.01), (160, 0.001), (180, 0.0005).

Data augmentation is the same as described in Section A.1.
We report the final validation performance and over the 200

https://keras.io/examples/cifar10_resnet/
https://keras.io/examples/cifar10_resnet/
https://github.com/google/edward2/tree/master/baselines/cifar10
https://github.com/google/edward2/tree/master/baselines/cifar10
https://www.tensorflow.org/datasets/catalog/cifar10
https://www.tensorflow.org/datasets/catalog/cifar10

Appendix for “How Good is the Bayes Posterior in Deep Neural Networks Really?”

0 200 400 600 800 1000 1200 1400
0.00

0.25

0.50

0.75

1.00

C(
t)

sampling phase

C(t)
Model sample

0 200 400 600 800 1000 1200 1400
Epoch

0.00

0.25

0.50

0.75

1.00

T(
t)

sampling phase
T(t)

Figure 1. Cyclical time stepping C(t), and temperature ramp-up
T (t), as proposed by Zhang et al. (2020) and used in Algorithm 1,
for our ResNet-20 CIFAR-10 model (Section A.1). We sample one
model at the end of each cycle when the inference accuracy is best,
obtaining an ensemble of 27 models.

epochs do not observe any overfitting.

A.3. CNN-LSTM IMDB Model

We use the IMDB sentiment classification text dataset pro-
vided by the tensorflow.keras.datasets API in
Tensorflow version 2.1. We use 20,000 words and a maxi-
mum sequence length of 100 tokens. We use 20,000 training
sequences and 25,000 testing sequences.

We use the CNN-LSTM example2 as a starting point. For
our SGD baseline we use the Keras model but add a prior
p(θ) = N (0, I) as used for the Bayesian posterior. We then
use the Tensorflow SGD implementation to optimize the
resulting U(θ) function. For SGD the model overfits and
we therefore report the best end-of-epoch test accuracy and
test cross-entropy achieved.

For all experiments, except where explicitly noted otherwise,
we use the following parameters:

• Number of epochs: 500
• Initial learning rate: ` = 0.1
• Momentum decay: β = 0.98
• Batch size: |B| = 32
• Sampling start: begin at epoch 50
• Cycle length: 25
• Cycle schedule: cosine
• Prior: p(θ) = N (0, I)

We visualize the cyclic schedule used in our CNN-LSTM
IMDB experiments in Figure 2.

A.4. CNN-LSTM IMDB SGD Baseline

The SGD baseline follows the Keras example settings:

2Available at https://github.com/keras-team/
keras/blob/master/examples/imdb_cnn_lstm.py

0 100 200 300 400 500
0.00

0.25

0.50

0.75

1.00

C(
t)

sampling phase

C(t)
Model sample

0 100 200 300 400 500
Epoch

0.00

0.25

0.50

0.75

1.00

T(
t)

sampling phase
T(t)

Figure 2. Cyclical time stepping C(t), and temperature ramp-up
T (t) for our CNN-LSTM IMDB model (Section A.3). We sample
one model at the end of each cycle when the inference accuracy is
best, obtaining an ensemble of 7 models.

• Number of epochs: 50
• Initial learning rate: ` = 0.1
• Momentum term: 0.98
• Regularization: MAP with N (0, I) prior
• Batch size: 32
• Optimizer: SGD with Nesterov momentum
• Learning rate schedule: None

We report the optimal test set performance from all end-of-
epoch test evaluations. This is necessary because there is
significant overfitting after the first ten epochs.

B. Deep Learning Parameterization of
SG-MCMC Methods

We derive the bijection between (learning rate `, momentum
decay β) and (timestep h, friction γ) by considering the
instantaneous gradient effect α on the parameter, i.e. the
amount by which the current gradient at time t affects the
current gradient update update at time t. We set α = `/n,
where ` is the familiar learning rate parameter used in
SGD and the factor 1/n is to convert ∇θU to ∇θG, as
∇θG = ∇θU/n is the familiar minibatch mean gradient.
Likewise, the momentum decay is the factor β < 1 by which
the momentum vector m(t) is shrunk in each discretized
time step. Having determined α and β we can derive two
non-linear equations that depend on the particular time dis-
cretization used; for the symplectic Euler Langevin scheme
these are

h2 = α

(
=
`

n

)
, and 1− hγ = β. (1)

Solving these equations for h and γ simultaneously, given `,
n, and β yields the bijection

h =
√
`/n, (2)

γ = (1− β)
√
n/`. (3)

https://github.com/keras-team/keras/blob/master/examples/imdb_cnn_lstm.py
https://github.com/keras-team/keras/blob/master/examples/imdb_cnn_lstm.py

Appendix for “How Good is the Bayes Posterior in Deep Neural Networks Really?”

Algorithm 1: Stochastic Gradient Descent with Mo-
mentum (SGD) in Tensorflow.

1 Function SGD(G̃, θ(0), `, β)
Input: G̃ : Θ→ R average batch loss function, cf

equation (7); θ(0) ∈ Rd initial parameter;
` > 0 learning rate parameter; β ∈ [0, 1)
momentum decay parameter.

Output: Parameter sequence θ(t), at step
t = 1, 2, . . .

2 m(0) ← 0 // Initialize momentum
3 for t = 1, 2, . . . do
4 m(t) ← βm(t−1) − `∇θG̃(θ(t−1))

// Update momentum

5 θ(t) ← θ(t−1) + m(t) // Update
parameters

6 yield θ(t) // Parameter at step t

C. Connection to Stochastic Gradient Descent
(SGD)

We now give a precise connection between stochastic gra-
dient descent (SGD) and the symplectic Euler SG-MCMC
method, Algorithm 1 from the main paper.

Algorithm 1 gives the stochastic gradient descent
(SGD) with momentum algorithm as implemented
in Tensorflow’s version 2.1 optimization meth-
ods, tensorflow.keras.optimizers.SGD
and tensorflow.train.MomentumOptimizer,
(Abadi et al., 2016).

Starting with Algorithm 1 we first perform an equivalent
substitution of the moments,

m̃(t) :=

√
n

`
m(t), respectively, (4)

m(t) :=

√
`

n
m̃(t), (5)

we obtain the update from line 4 in Algorithm 1,√
`

n
m̃(t) ← β

√
`

n
m̃(t−1) − `∇θG̃(θ(t−1). (6)

Multiplying both sides of (6) by
√
n/
√
` we obtain an equiv-

alent form of Algorithm 1 with lines 4 and 5 replaced by

m̃(t) ← β m̃(t−1) −
√
`n∇θG̃(θ(t−1)), (7)

θ(t) ← θ(t−1) +

√
`

n
m̃(t). (8)

From the bijection (2–3) we have h =
√
`/n and γ =

(1− β)
√
n/`. Solving for β gives

β = 1− γ
√
`

n
= 1− γh. (9)

Algorithm 2: Stochastic Gradient Descent with Mo-
mentum (SGD), reparameterized.

1 Function SGDEquivalent(G̃, θ(0), `, β)
Input: G̃ : Θ→ R average batch loss function, cf

equation (7); θ(0) ∈ Rd initial parameter;
h > 0 discretization step size parameter;
γ > 0 friction parameter.

Output: Parameter sequence θ(t), t = 1, 2, . . . , at
step t

2 m̃(0) ← 0 // Initialize momentum
3 for t = 1, 2, . . . do
4 m̃(t) ← (1− γh) m̃(t−1) − hn∇θG̃(θ(t−1))

// Update momentum

5 θ(t) ← θ(t−1) + h m̃(t) // Update
parameters

6 yield θ(t) // Parameter at step t

We also have
√
`n =

√
`

n
n2 = n

√
`

n
= hn. (10)

Substituting (9) and (10) into (7) and (8) gives the equivalent
updates

m̃(t) ← (1− γh) m̃(t−1) − hn∇θG̃(θ(t−1)),(11)
θ(t) ← θ(t−1) + h m̃(t). (12)

These equivalent changes produce Algorithm 2. Algorithm 1
and Algorithm 2 generate equivalent trajectories θ(t), t =
1, 2, . . . , but differ in the scaling of their momenta, m(t)

and m̃(t).

Comparing lines 4–5 in Algorithm 2 with lines 13–14 in
Algorithm 1 from the main paper we see that when M = I
and C(t) = 1 the only remaining difference between the
updates is the additional noise

√
2γhT M1/2R(t) in the

SG-MCMC method. In this precise sense the SG-MCMC
Algorithm 1 from the main paper is just “SGD with noise”.

D. Semi-Adaptive Estimation of Layerwise
Preconditioner M

During our experiments with deep learning models we no-
ticed that both minibatch noise as well as gradient magni-
tudes tend to behave similar within a set of related parame-
ters. For example, for a given learning iteration, all gradients
related to convolution kernel weights of the same convolu-
tion layer of a network tend to have similar magnitudes and
minibatch noise variance. At the same iteration they may be
different from the magnitudes and minibatch noise variance
of gradients of the parameters of another layer in the same
network.

Therefore, we estimate a simple diagonal preconditioner that
ties together the scale of all parameter elements that belong

Appendix for “How Good is the Bayes Posterior in Deep Neural Networks Really?”

Algorithm 3: Estimate Layerwise Preconditioner.

1 Function EstimateM(G̃, θ, K, ε)
Input: G̃ : Θ→ R mean energy function estimate;

(θ1, . . . ,θS) ∈ Rd1×···×dS current model
parameter variables; K number of
minibatches (default K = 32); ε
regularization value (default ε = 10−7)

Output: Preconditioning matrix M
2 for s = 1, 2, . . . , S do
3 vs ← 0
4 for k = 1, 2, . . . ,K do
5 g(k) ← ∇θG̃(θ) // Noisy gradient
6 for s = 1, 2, . . . , S do
7 vs ← vs + g

(k)
s · g(k)

s

8 for s = 1, 2, . . . , S do
9 σs ←

√
ε+ 1

dsK

∑
i vs,i // RMSprop

10 σmin ← mins σs // Least sensitive
11 for s = 1, 2, . . . , S do
12 Ms ← σs

σmin
I

13 M←

 M1 . . . 0
...

. . .
...

0 . . . MS


14 return M

to the same model variable. Moreover, we normalize the
preconditioner so that the least sensitive variable always has
scale one. With such normalization, if all variables would
be equally sensitive the preconditioner becomes M = I ,
the identity preconditioner.

We estimate the layerwise preconditioner using Algorithm 3.

Updating the preconditioner. In Langevin schemes the
preconditioner couples the moment space to the parame-
ter space. If we use a new estimate M′ to replace the old
preconditioner M then we change this coupling and if left
unchanged then the old moments m would no longer have
the correct distribution.3 We therefore posit that upon chang-
ing the preconditioner the effect of the moments should
remain the same. To retain the full information in the cur-
rent moments we set m′ = M′1/2M−1/2m which we can
understand as M′1/2(M−1/2m), where the bracketed part
canonicalizes the moments m to the identity preconditioner,
and M′1/2 transfers the canonical moments to the new pre-
conditioner.

3More precisely, M−1/2m should always be distributed ac-
cording toN (0, I).

E. Kullback-Leibler Scaling in Variational
Bayesian Neural Networks

With the posterior energy U(θ) defined in the main paper
we define two variants of tempered posterior energies:

• Fully tempered energy: UF (θ) = U(θ)/T , and
• Partially tempered energy: UP (θ) = − log p(θ) −

1
T

∑n
i=1 log p(yi|xi,θ).

Note that UF (θ) is used for all experiments in the paper
and temper both the log-likelihood as well as the log-prior
terms, whereas UP (θ) only scales the log-likelihood terms
while leaving the log-prior untouched.

We now show that Kullback-Leibler scaling as commonly
done in variational Bayesian neural networks corresponds
to approximating the partially tempered posterior,

pP (θ|D) ∝ exp(−UP (θ)). (13)

For any distribution q(θ) we consider the Kullback-Leibler
divergence,

DKL(q(θ) ‖ pP (θ|D)) (14)
= Eθ∼q(θ) [log q(θ)− log pP (θ|D)] (15)

= Eθ∼q(θ)

[
log q(θ)− log

exp(−UP (θ))∫
exp(−UP (θ′)) dθ′

]
.

(16)

The normalizing integral in (16) is not a function of θ and
thus does not depend on q(θ), allowing us to simplify the
equation further:

= Eθ∼q(θ)

[
log q(θ)− log p(θ)− 1

T

n∑
i=1

log p(yi|xi,θ)

]

(17)

+ log

∫
exp(−UP (θ)) dθ︸ ︷︷ ︸

constant, =: logEP

(18)

= DKL(q(θ) ‖ p(θ))− 1

T

n∑
i=1

log p(yi|xi,θ) + logEP .

(19)

Here we defined EP as the partial temperized evidence
which does not depend on θ and therefore becomes a con-
stant. The global minimizer of (19) over all distributions
q ∈ Q is the unique distribution pP (θ|D), (MacKay et al.,
1995).

Appendix for “How Good is the Bayes Posterior in Deep Neural Networks Really?”

We now consider this minimizer, substituting λ := T ,

argmin
q∈Q

DKL(q(θ) ‖ pP (θ|D)) (20)

= argmin
q∈Q

DKL(q(θ) ‖ p(θ))− 1

T

n∑
i=1

log p(yi|xi,θ)

(21)

The minimizing q ∈ Q does not depend on the overall
scaling of the optimizing function. We can therefore scale
the function by a factor of T ,

= argmin
q∈Q

TDKL(q(θ) ‖ p(θ))−
n∑
i=1

log p(yi|xi,θ)

(22)

Substituting λ := T yields

= argmin
q∈Q

λDKL(q(θ) ‖ p(θ))−
n∑
i=1

log p(yi|xi,θ).

(23)

The last equation, (23) is the KL-weighted negative evi-
dence lower bound (ELBO) objective commonly used in
variational Bayes for Bayesian neural networks, confer the
ELBO equation (4) from the main paper.

F. Inference Bias-Variance Trade-off
Hypothesis

Bias-variance Tradeoff Hypothesis: For T = 1 the
posterior is diverse and there is high variance between
model predictions. For T � 1 we sample nearby
modes and reduce prediction variance but increase bias;
the variance dominates the error and reducing variance
(T � 1) improves predictive performance.

We approach the hypothesis using a simple asymptotic argu-
ment. We consider the SG-MCMC method we use, includ-
ing preconditioning and cyclical time stepping. Whereas
within a cycle the Markov chain is non-homogeneous, if we
consider only the end-of-cycle iterates that emit a parame-
ter θ(t), then this coarse-grained process is a homogeneous
Markov chain. For such Markov chains we can leverage
generalized central limit theorems for functions of θ, see
e.g. (Jones et al., 2004; Häggström & Rosenthal, 2007), and
because of existence of limits we can consider the asymp-
totic behavior of the test cross-entropy performance measure
C(S) as we increase the ensemble size S →∞.

In particular, expectations of smooth functions of em-
pirical means of S samples have an expansion of the
form, (Nowozin, 2018; Schucany et al., 1971),

E[C(S)] = C(∞) + a1
1

S
+ a2

1

S2
+ (24)

5 10 15 20 25
Ensemble size S

0.35

0.40

0.45

Te
st

 c
ro

ss
 e

nt
ro

py SG-MCMC ensemble, T = 1
2nd-order fit C(S)
Asymptotic limit C() 0.341

Figure 3. Regressing the limiting ResNet-20/CIFAR-10 ensemble
performance: at temperature T = 1 an ensemble of size S =∞
would achieve 0.341 test cross-entropy. For SG-MCMC we show
three different runs with varying seeds.

10 4 10 3 10 2 10 1 100

Temperature T

0.15

0.20

0.25

0.30

Te
st

 c
ro

ss
 e

nt
ro

py Asymptotic limit C()
C(S = 28)

10 4 10 3 10 2 10 1 100

Temperature T

0.25

0.30

0.35

0.40

0.45

Te
st

 c
ro

ss
-e

nt
ro

py Asymptotic limit C()
C(S = 19)

Figure 4. Ensemble variance for ResNet-20/CIFAR-10 (top) and
CNN-LSTM/IMDB (bottom) does not explain poor performance
at T = 1: even in the infinite limit the performanceC(∞) remains
poor compared to T < 1.

Risk Asymptotics Experiment: if we can estimate C(∞)
we know what performance we could achieve if we were
to keep sampling. To this end we apply a simple linear
regression estimate, (Schucany et al., 1971), to the empir-
ically observed performance estimates Ĉ(S) for different
ensemble sizes S. By truncation at second order, we obtain
estimates for C(∞), a1, and a2.

In Figure 3 we show the regressed test cross-entropy metric
obtained by fitting (24) to second order to all samples for
S ≥ 20 close to the asymptotic regime, and visualize the es-
timate Ĉ(∞). In Figure 4 we visualize our estimated Ĉ(∞)
as a function of the temperature T . The results indicate two
things: first, we could gain better predictive performance
from running our SG-MCMC method for longer (Figure 3);
but second, the additional gain that could be obtained from
longer sampling is too small to make T = 1 superior to
T < 1 (Figure 4).

Appendix for “How Good is the Bayes Posterior in Deep Neural Networks Really?”

10−4 10−3 10−2 10−1 100

Temperature T

0.10

0.12

0.14

0.16

T
es

t B
rie

r
S

co
re SG-MCMC

10−4 10−3 10−2 10−1 100

Temperature T

0.01

0.02

0.03

T
es

t E
C

E

SG-MCMC

Figure 5. ResNet-20/CIFAR-10: In the main paper we show that
cold posteriors improve prediction performance in terms of accu-
racy and cross entropy (Figure 1 and Figure 2). This plot shows
that cold posteriors also improve the uncertainty metrics Brier
score and expected calibration error (ECE) (lower is better).

10−4 10−3 10−2 10−1 100

Temperature T

0.200

0.225

0.250

0.275

T
es

t B
rie

r
S

co
re

10−4 10−3 10−2 10−1 100

Temperature T

0.02

0.04

0.06

0.08

T
es

t E
C

E

Figure 6. CNN-LSTM/IMDB: Cold posteriors also improve the un-
certainty metrics Brier score and expected calibration error (ECE)
(lower is better). The plots for accuracy and cross entropy are
shown in Figure 3.

G. Cold posteriors improve uncertainty
metrics.

In the main paper we show that cold posteriors improve pre-
diction performance in terms of accuracy and cross entropy.
Figure 5 and Figure 6 show that for both the ResNet-20 and
the CNN-LSTM model, cold posteriors also improve the
uncertainty metrics Brier score (Brier, 1950) and expected
calibration error (ECE) (Naeini et al., 2015).

0 100 200 300 400 500 600 700 800
Epochs

0.0

0.2

0.4

0.6

0.8

Si
ng

le
 m

od
el

 c
ro

ss
 e

nt
ro

py SGD 10 cycles of SG-MCMC sampling SGD

train
test

Figure 7. Do the SG-MCMC dynamics harm a beneficial initializa-
tion bias used by SGD? We first train a ResNet-20 on CIFAR-10
via SGD, then switch over to SG-MCMC sampling and finally
switch back to SGD optimization. We report the single-model test
cross entropy of SGD and the SG-MCMC chain as function of
epochs. SGD recovers from being initialized by the SG-MCMC
state.

H. Details on the Experiment for the Implicit
Initialization Prior in SGD Hypothesis

SGD and SG-MCMC are setup as described in Ap-
pendix A.1. In the main paper the test accuracy as function
of epochs is shown in Figure 13. In Figure 7 we additionally
report the test cross entropy for the same experiment. SGD
initialized by the last model of the SG-MCMC sampling
dynamics also recovers the same performance in terms of
cross entropy as vanilla SGD.

I. Diagnostics: Temperatures
The following proposition adapted from (Leimkuhler &
Matthews, 2016, Section 6.1.5) provides a general way to
construct temperature observables.

Proposition 1 (Constructing Temperature Observables).
Given a Hamiltonian H(θ,m) corresponding to Langevin
dynamics,

H(θ,m) =
1

T
U(θ) +

1

2
mTM−1m, (25)

and an arbitrary smooth vector field B : Rd × Rd →
Rd × Rd satisfying

• 0 < E(θ,m)[〈B(θ,m),∇H(θ,m)〉] <∞,
• 0 < E(θ,m)[〈12d,∇B(θ,m)〉] <∞, and
• ‖B(θ,m) exp(−H(θ,m))‖ < ∞ for all (θ,m) ∈
Rd × Rd,

then

T =
E(θ,m)[〈B(θ,m),∇H(θ,m)〉]

E(θ,m)[〈12d,∇B(θ,m)〉]
. (26)

Note that for the Hamiltonian (25) we have, assuming a

Appendix for “How Good is the Bayes Posterior in Deep Neural Networks Really?”

symmetric preconditioner, (M−1)T = M−1,

∇θH(θ,m) =
1

T
∇θU(θ), (27)

∇mH(θ,m) = M−1 m. (28)

I.1. Kinetic Temperature Estimation

Simulating the Langevin dynamics, equations (5–6) from
the main paper, produces moments m which are jointly
distributed according to a multivariate Normal distribu-
tion, (Leimkuhler & Matthews, 2016),

m ∼ N (0,M). (29)

The kinetic temperature T̂K(m) is derived from the mo-
ments as

T̂K(m) :=
mT M−1 m

d
, (30)

and we have that for a perfect simulation of the dynamics we
achieve E[T̂K(m)] = T , where T is the target temperature
of the system, (Leimkuhler & Matthews, 2016). This can
be seen by instantiating Proposition 1 for the Langevin

Hamiltonian and BK(θ,m) =

[
0
m

]
.

In general we only approximately solve the SDE and errors
in the solution arise due to discretization, minibatch noise,
or lack of full equilibration to the stationary distribution.
Therefore, we can use T̂K(m) as a diagnostic to measure
the temperature of the current system state, and a deviation
from the target temperature could diagnose poor solution
accuracy. To this end, we know that if m ∼ N (0,M)
then (M−1/2 m) ∼ N (0, Id) and thus the inner product
(M−1/2 m)T (M−1/2 m) = mT M−1 m is distributed ac-
cording to a standard χ2-distribution with d degrees of free-
dom,

(mTM−1m) ∼ χ2(d). (31)

The χ2(d) distribution has mean d and variance 2d and we
can use the tail probabilities to test whether the observed
temperature could arise from an accurate discretization of
the SDE (5–6). For a given confidence level c ∈ (0, 1), e.g.
c = 0.99, we define the confidence interval

JTK
(d, c) :=

(
T

d
F−1χ2(d)

(
1− c

2

)
,
T

d
F−1χ2(d)

(
1 + c

2

))
,

(32)
where F−1χ2(d) is the inverse cumulative distribution func-
tion of the χ2 distribution with d degrees of freedom. By
construction if (31) holds, then T̂K(m) ∈ JTK

(d, c) with
probability c exactly.

Therefore, if c is close to one, say c = 0.99, and we find
that T̂K(m) /∈ J(d, c) this indicates issues of discretization
error or convergence of the SDE (5–6).

Because (29) holds for any subvector of m, we can create
one kinetic temperature estimate for each model variable
separately, such as one or two scalar temperature estimates
for each layer (e.g. one for the weights and one for the
bias of a Dense layer). We found per-layer temperature
estimates helpful in diagnosing convergence issues and this
directly led to the creation of our layerwise preconditioner.

I.2. Configurational Temperature Estimation

The so called configurational temperature4 is defined as

T̂C(θ,∇θU(θ)) =
〈θ,∇θU(θ)〉

d
. (33)

For a perfect simulation of SDE (5–6) we have E[T̂C] = T ,
where T is the target temperature of the system. This can
be seen by instantiating Proposition 1 for the Langevin

Hamiltonian and BC(θ,m) =

[
θ
0

]
.

As for the kinetic temperature diagnostic, we can instantiate
Proposition 1 for arbitrary subsets of parameters by a suit-
able choice of BC(θ,m). However, whereas for the kinetic
temperature the exact sampling distribution of the estimate
is known in the form of a scaled χ2 distribution, we are
not aware of a characterization of the sampling distribution
of configurational temperature estimates. It is likely this
sampling distribution depends on U(θ) and thus does not
have a simple form. Proposition 1 only asserts that under
the true target distribution we have

Eθ∼exp(−U(θ)/T)[T̂C(θ,∇θU(θ))] = T. (34)

Because (33) is the empirical average of per parameter ran-
dom variables, if all these variables have finite variance the
central limit theorem asserts that for large d we can expect

T̂C(θ,∇θU(θ)) ∼ N (T, σ2
TC

), (35)

with unknown variance σ2
TC

.

Recent work of Yaida (2018) provides a similar diagnostic,
equation (FDR1’) in their work, to the configurational tem-
perature (33) for the SGD equilibrium distribution under
finite time dynamics. However, our goal here is different:
whereas Yaida (2018) is interested in diagnosing conver-
gence to the SGD equilibrium distribution in order to adjust
learning rates we instead want to diagnose discrepancy of
our current dynamics against the true target distribution.

J. Simulation Accuracy Ablation Study
Equipped with the diagnostics of Section I we can now study
how accurate our algorithms simulate the Langevin dynam-
ics. We will demonstrate that layerwise preconditioning and

4Sometimes other quantities are also refered to as configura-
tional temperature, see (Leimkuhler & Matthews, 2016, Section
6.1.5).

Appendix for “How Good is the Bayes Posterior in Deep Neural Networks Really?”

cyclical time stepping are individually effective at improv-
ing simulation accuracy, however, only by combining these
two methods we can achieve high simulation accuracy on
the CNN-LSTM model as measured by our diagnostics.

Setup. We perform the same ResNet-20 CIFAR-10 and
CNN-LSTM IMDB experiments as in the main paper, but
consider four variations of our algorithm: with and without
preconditioning, and with and without cosine time stepping
schedules. In case no preconditioner is used we simply set
M = I for all iterations. In case no cosine time stepping is
used we simply set C(t) = 1 for all iterations.

Independent of whether cosine time stepping is used we di-
vide the iterations into cycles and for each method consider
all models at the end of a cycle, where we hope simulation
accuracy is the highest. We then evaluate the temperature
diagnostics for all model variables. For the kinetic tem-
peratures, if simulation is accurate then 99 percent of the
variables should on average lie in the 99% high probability
region under the sampling distribution. For the configura-
tional temperature we can only report the average configura-
tional temperature across all the end-of-cycle models.

Results. We report the results in Table 1 and Table 2 and
visualize the kinetic temperatures in Figures 8 to 11 and
Figures 12a to 12d.

The results indicate that both cosine time stepping and layer-
wise preconditioning have a beneficial effect on simulation
accuracy. For ResNet-20 cyclical time stepping is suffi-
cient for high simulation accuracy, but it is by itself not
able to achieve high accuracy on the CNN-LSTM model.
For both models the combination of cyclical time stepping
and preconditioning (Figure 8 and Figure 12a) achieves a
high simulation accuracy, that is, all kinetic temperatures
match the sampling distribution of the Langevin dynam-
ics, indicating—at least with respect to the power of our
diagnostics—accurate simulation.

Another interesting observation can be seen in Table 1: we
can achieve a high accuracy of ≥ 88 percent even in cases
where the simulation accuracy is poor. This indicates that
optimization is different from accurate Langevin dynamics
simulation.

K. Dirty Likelihood Functions

Dirty Likelihood Hypothesis: Deep learning prac-
tices that violate the likelihood principle (batch normal-
ization, dropout, data augmentation) cause deviation
from the Bayes posterior.

We now discuss how batch normalization, dropout, and data
augmentation produce non-trivial modifications to the like-

lihood function. We call the resulting likelihood functions
“dirty” to distinguish them from clean likelihood functions
without such modifications. Our discussion will suggest that
these techniques can be seen as a computational efficient
“Jensen posterior” approximation of a proper Bayesian pos-
terior of another model. Our analysis builds on and gener-
alizes previous Bayesian interpretations, (Noh et al., 2017;
Atanov et al., 2018; Shekhovtsov & Flach, 2018; Nalisnick
et al., 2019; Inoue, 2019). In Section K.4 we perform an
experiment to demonstrate that the dirty likelihood cannot
explain cold posteriors.

K.1. Augmented Latent Model

yiθ

x′i zi

xi

i = 1, . . . , n

Figure 13. Augmented
model with added latent
variable zi.

To accommodate popular
deep learning methods we
first augment the probabilistic
model p(y|x,θ) itself by
adding a latent variable z.
The augmented model is
p(y|x, z,θ) and we can obtain
the effective model p(y|x,θ) =∫
p(y|x, z,θ) p(z)dz. For a

dataset D = {(xi, yi)}i=1,...,n,
where we denote
X = (x1, . . . , xn) and
Y = (y1, . . . , yn), the result-
ing model has as likelihood
function in θ that is the
marginal likelihood, obtained by integrating over all zi
variables,

p(Y |X,θ) =

n∏
i=1

p(yi |xi,θ) (36)

=

n∏
i=1

Ezi∼p(zi)[p(yi |xi, zi,θ)]. (37)

Note that in (37) the latent variable zi is integrated out and
therefore the marginal likelihood is a deterministic function.

K.2. Log-likelihood Bound and Jensen Posterior

Given a prior p(θ) the log-posterior for the augmented
model in Figure 13 takes the form

log p(θ | D) (38)

= C + log p(θ) +

n∑
i=1

logEzi∼p(zi)[p(yi |xi, zi,θ)],

(39)

Appendix for “How Good is the Bayes Posterior in Deep Neural Networks Really?”

Precond Cyclic Ê[T̂K ∈ R99] Ê[T̂C] Accuracy (%) Cross-entropy

3 3 0.989±0.0014 0.94±0.011 88.2±0.11 0.358±0.0011
7 3 0.9772±0.00059 1.02±0.018 88.49±0.014 0.3500±0.00064
3 7 0.905±0.0019 1.23±0.046 88.0±0.10 0.3808±0.00064
7 7 0.676±0.0052 1.7±0.18 86.86±0.072 0.507±0.0080

Table 1. ResNet-20 CIFAR-10 simulation accuracy ablation at T = 1: layerwise preconditioning and cyclical time stepping each have a
beneficial effect on improving inference accuracy and the effect is complementary. Ê[T̂K ∈ R99] is the empirically estimated probability
that the kinetic temperature statistics are in the 99% confidence interval, the ideal value is 0.99. Ê[T̂C] is the empirical average of the
configurational temperature estimates, the ideal value is 1.0. For both quantities we take the value achieved at the end of each cycle, that
is, whenever C(t) = 0 and average all the resulting values. The deviation is given in ±SEM where SEM is the standard error of the mean
estimated from three independent experiment replicates. Both preconditioning and cyclical time stepping are effective at improving the
simulation accuracy.

Precond Cyclic Ê[T̂K ∈ R99] Ê[T̂C] Accuracy (%) Cross-entropy

3 3 0.954±0.0053 0.99122±0.000079 81.95±0.22 0.425±0.0032
7 3 0.761±0.0095 1.012±0.0088 51.3±0.65 0.6925±0.00019
3 7 0.49±0.012 0.9933±0.00019 74.5±0.49 0.579±0.0048
7 7 0.384±0.0018 1.0141±0.00066 0.49997±0.000039 0.698±0.0013

Table 2. CNN-LSTM IMDB simulation accuracy ablation at T = 1: with both layerwise preconditioning and cyclical time stepping
we can achieve high inference accuracy as measured by configurational and kinetic temperature diagnostics. Just using one (either
preconditioning or cyclical time stepping) is insufficient for high inference accuracy. This is markedly different from the results obtained
for ResNet-20 CIFAR-10 (Table 1), indicating that perhaps the ResNet posterior is easier to sample from.

co
nv

2d
/b

ia
s

co
nv

2d
/k

er
ne

l
co

nv
2d

_1
/b

ia
s

co
nv

2d
_1

/k
er

ne
l

co
nv

2d
_1

0/
bi

as
co

nv
2d

_1
0/

ke
rn

el
co

nv
2d

_1
1/

bi
as

co
nv

2d
_1

1/
ke

rn
el

co
nv

2d
_1

2/
bi

as
co

nv
2d

_1
2/

ke
rn

el
co

nv
2d

_1
3/

bi
as

co
nv

2d
_1

3/
ke

rn
el

co
nv

2d
_1

4/
bi

as
co

nv
2d

_1
4/

ke
rn

el
co

nv
2d

_1
5/

bi
as

co
nv

2d
_1

5/
ke

rn
el

co
nv

2d
_1

6/
bi

as
co

nv
2d

_1
6/

ke
rn

el
co

nv
2d

_1
7/

bi
as

co
nv

2d
_1

7/
ke

rn
el

co
nv

2d
_1

8/
bi

as
co

nv
2d

_1
8/

ke
rn

el
co

nv
2d

_1
9/

bi
as

co
nv

2d
_1

9/
ke

rn
el

co
nv

2d
_2

/b
ia

s
co

nv
2d

_2
/k

er
ne

l
co

nv
2d

_2
0/

bi
as

co
nv

2d
_2

0/
ke

rn
el

co
nv

2d
_3

/b
ia

s
co

nv
2d

_3
/k

er
ne

l
co

nv
2d

_4
/b

ia
s

co
nv

2d
_4

/k
er

ne
l

co
nv

2d
_5

/b
ia

s
co

nv
2d

_5
/k

er
ne

l
co

nv
2d

_6
/b

ia
s

co
nv

2d
_6

/k
er

ne
l

co
nv

2d
_7

/b
ia

s
co

nv
2d

_7
/k

er
ne

l
co

nv
2d

_8
/b

ia
s

co
nv

2d
_8

/k
er

ne
l

co
nv

2d
_9

/b
ia

s
co

nv
2d

_9
/k

er
ne

l
de

ns
e/

bi
as

de
ns

e/
ke

rn
el

0.0

0.5

1.0

1.5

2.0

2.5

Ki
ne

tic
 te

m
pe

ra
tu

re
 T

K 130 of 132 in 99% sampling interval

Figure 8. ResNet-20 CIFAR-10 Langevin per-variable kinetic temperature estimates with preconditioning and with cosine time stepping
schedule. The green bars show the 99% true sampling distribution of the Kinetic temperature sample. The blue dots show the actual
kinetic temperature samples at the end of sampling. About 1% of variables should be outside the green boxes, which matches the empirical
count (2 out of 132 samples), indicating an accurate simulation of the Langevin dynamics at the end of each cycle.

where we can now apply Jensen’s inequality, f(E[x]) ≥
E[f(x)] for concave f = log,

≥ C + log p(θ) +

n∑
i=1

Ezi∼p(zi)[log p(yi |xi, zi,θ)],

(40)

where C = − log p(Y |X) is the negative model evidence
and is constant in θ. We call equation (40) the Jensen bound
to the log-posterior log p(θ|D).

Jensen Posterior. Because we can estimate (40) in an
unbiased manner, we will see that many popular methods

Appendix for “How Good is the Bayes Posterior in Deep Neural Networks Really?”

co
nv

2d
/b

ia
s

co
nv

2d
/k

er
ne

l
co

nv
2d

_1
/b

ia
s

co
nv

2d
_1

/k
er

ne
l

co
nv

2d
_1

0/
bi

as
co

nv
2d

_1
0/

ke
rn

el
co

nv
2d

_1
1/

bi
as

co
nv

2d
_1

1/
ke

rn
el

co
nv

2d
_1

2/
bi

as
co

nv
2d

_1
2/

ke
rn

el
co

nv
2d

_1
3/

bi
as

co
nv

2d
_1

3/
ke

rn
el

co
nv

2d
_1

4/
bi

as
co

nv
2d

_1
4/

ke
rn

el
co

nv
2d

_1
5/

bi
as

co
nv

2d
_1

5/
ke

rn
el

co
nv

2d
_1

6/
bi

as
co

nv
2d

_1
6/

ke
rn

el
co

nv
2d

_1
7/

bi
as

co
nv

2d
_1

7/
ke

rn
el

co
nv

2d
_1

8/
bi

as
co

nv
2d

_1
8/

ke
rn

el
co

nv
2d

_1
9/

bi
as

co
nv

2d
_1

9/
ke

rn
el

co
nv

2d
_2

/b
ia

s
co

nv
2d

_2
/k

er
ne

l
co

nv
2d

_2
0/

bi
as

co
nv

2d
_2

0/
ke

rn
el

co
nv

2d
_3

/b
ia

s
co

nv
2d

_3
/k

er
ne

l
co

nv
2d

_4
/b

ia
s

co
nv

2d
_4

/k
er

ne
l

co
nv

2d
_5

/b
ia

s
co

nv
2d

_5
/k

er
ne

l
co

nv
2d

_6
/b

ia
s

co
nv

2d
_6

/k
er

ne
l

co
nv

2d
_7

/b
ia

s
co

nv
2d

_7
/k

er
ne

l
co

nv
2d

_8
/b

ia
s

co
nv

2d
_8

/k
er

ne
l

co
nv

2d
_9

/b
ia

s
co

nv
2d

_9
/k

er
ne

l
de

ns
e/

bi
as

de
ns

e/
ke

rn
el

0.0

0.5

1.0

1.5

2.0

2.5

Ki
ne

tic
 te

m
pe

ra
tu

re
 T

K 2.88130 of 132 in 99% sampling interval

Figure 9. ResNet-20 CIFAR-10 Langevin per-variable kinetic temperature estimates without preconditioning but with cosine time
stepping schedule. Two out of 132 variables are outside the 99% hpd region, indicating accurate simulation.

co
nv

2d
/b

ia
s

co
nv

2d
/k

er
ne

l
co

nv
2d

_1
/b

ia
s

co
nv

2d
_1

/k
er

ne
l

co
nv

2d
_1

0/
bi

as
co

nv
2d

_1
0/

ke
rn

el
co

nv
2d

_1
1/

bi
as

co
nv

2d
_1

1/
ke

rn
el

co
nv

2d
_1

2/
bi

as
co

nv
2d

_1
2/

ke
rn

el
co

nv
2d

_1
3/

bi
as

co
nv

2d
_1

3/
ke

rn
el

co
nv

2d
_1

4/
bi

as
co

nv
2d

_1
4/

ke
rn

el
co

nv
2d

_1
5/

bi
as

co
nv

2d
_1

5/
ke

rn
el

co
nv

2d
_1

6/
bi

as
co

nv
2d

_1
6/

ke
rn

el
co

nv
2d

_1
7/

bi
as

co
nv

2d
_1

7/
ke

rn
el

co
nv

2d
_1

8/
bi

as
co

nv
2d

_1
8/

ke
rn

el
co

nv
2d

_1
9/

bi
as

co
nv

2d
_1

9/
ke

rn
el

co
nv

2d
_2

/b
ia

s
co

nv
2d

_2
/k

er
ne

l
co

nv
2d

_2
0/

bi
as

co
nv

2d
_2

0/
ke

rn
el

co
nv

2d
_3

/b
ia

s
co

nv
2d

_3
/k

er
ne

l
co

nv
2d

_4
/b

ia
s

co
nv

2d
_4

/k
er

ne
l

co
nv

2d
_5

/b
ia

s
co

nv
2d

_5
/k

er
ne

l
co

nv
2d

_6
/b

ia
s

co
nv

2d
_6

/k
er

ne
l

co
nv

2d
_7

/b
ia

s
co

nv
2d

_7
/k

er
ne

l
co

nv
2d

_8
/b

ia
s

co
nv

2d
_8

/k
er

ne
l

co
nv

2d
_9

/b
ia

s
co

nv
2d

_9
/k

er
ne

l
de

ns
e/

bi
as

de
ns

e/
ke

rn
el

0.0

0.5

1.0

1.5

2.0

2.5

Ki
ne

tic
 te

m
pe

ra
tu

re
 T

K 120 of 132 in 99% sampling interval

Figure 10. ResNet-20 CIFAR-10 Langevin per-variable kinetic temperature estimates with preconditioning but without cosine time
stepping schedule (flat schedule). 12 out of 132 variables are too hot (boxes in red) and lie outside the acceptable region, indicating
an inaccurate simulation of the Langevin dynamics. However, there is a marked improvement due to preconditioning compared to no
preconditioning (Figure 11).

such as dropout and data augmentation can be cast as spe-
cial cases of the Jensen bound. We also define the Jensen
posterior as the posterior distribution associated with (40).
Formally, the Jensen posterior is

pJ(θ | D) :∝ (41)

p(θ)

n∏
i=1

exp
(
Ezi∼p(zi) [log p(yi |xi, zi,θ)]

)
. (42)

Given this object, can we relate its properties to the proper-
ties of the full posterior, and can the Jensen posterior serve
as a meaningful surrogate to the true posterior? We first
observe that pJ(θ | D) indeed defines a probability distri-
bution over parameters: with a proper prior p(θ), we have
p(θ | D) ≥ pJ(θ | D) by (39–40), thus

∫
pJ(θ | D) dθ ≤∫

p(θ | D) dθ <∞.

Jensen Prior. We now show that the Jensen posterior can
be interpreted as a full Bayesian posterior in a different
model. In particular, we give a construction which retains
the likelihood of the original model but modifies the prior.
In the function that re-weights the prior the data set appears;
this is not to be understood as a prior which depends on the
observed data. Instead, we can think of this as an existence
proof, that is, if we were to have chosen this modified prior
then the resulting Jensen posterior under the modified Jensen
prior corresponds to the full Bayesian posterior under the
original prior.

In a sense the result is vacuous because any desirable pos-
terior can be obtained by such re-weighting. However, the
proof illustrates the structure of how the Jensen posterior
deviates from the true posterior through a set of weighting

Appendix for “How Good is the Bayes Posterior in Deep Neural Networks Really?”

co
nv

2d
/b

ia
s

co
nv

2d
/k

er
ne

l
co

nv
2d

_1
/b

ia
s

co
nv

2d
_1

/k
er

ne
l

co
nv

2d
_1

0/
bi

as
co

nv
2d

_1
0/

ke
rn

el
co

nv
2d

_1
1/

bi
as

co
nv

2d
_1

1/
ke

rn
el

co
nv

2d
_1

2/
bi

as
co

nv
2d

_1
2/

ke
rn

el
co

nv
2d

_1
3/

bi
as

co
nv

2d
_1

3/
ke

rn
el

co
nv

2d
_1

4/
bi

as
co

nv
2d

_1
4/

ke
rn

el
co

nv
2d

_1
5/

bi
as

co
nv

2d
_1

5/
ke

rn
el

co
nv

2d
_1

6/
bi

as
co

nv
2d

_1
6/

ke
rn

el
co

nv
2d

_1
7/

bi
as

co
nv

2d
_1

7/
ke

rn
el

co
nv

2d
_1

8/
bi

as
co

nv
2d

_1
8/

ke
rn

el
co

nv
2d

_1
9/

bi
as

co
nv

2d
_1

9/
ke

rn
el

co
nv

2d
_2

/b
ia

s
co

nv
2d

_2
/k

er
ne

l
co

nv
2d

_2
0/

bi
as

co
nv

2d
_2

0/
ke

rn
el

co
nv

2d
_3

/b
ia

s
co

nv
2d

_3
/k

er
ne

l
co

nv
2d

_4
/b

ia
s

co
nv

2d
_4

/k
er

ne
l

co
nv

2d
_5

/b
ia

s
co

nv
2d

_5
/k

er
ne

l
co

nv
2d

_6
/b

ia
s

co
nv

2d
_6

/k
er

ne
l

co
nv

2d
_7

/b
ia

s
co

nv
2d

_7
/k

er
ne

l
co

nv
2d

_8
/b

ia
s

co
nv

2d
_8

/k
er

ne
l

co
nv

2d
_9

/b
ia

s
co

nv
2d

_9
/k

er
ne

l
de

ns
e/

bi
as

de
ns

e/
ke

rn
el

0.0

0.5

1.0

1.5

2.0

2.5

Ki
ne

tic
 te

m
pe

ra
tu

re
 T

K 29.20
30.12
17.13

81 of 132 in 99% sampling interval

Figure 11. ResNet-20 CIFAR-10 Langevin per-variable kinetic temperature estimates without preconditioning and without cosine time
stepping schedule (flat schedule). 51 out of 132 kinetic temperature samples are too hot (shaded in red) and lie outside the acceptable
region, sometimes severely so, indicating a very poor simulation accuracy for the Langevin dynamics.

functions; each weighting function measures a local Jensen
gap related to each instance. Although we did not pursue
this line, the local Jensen gap (47) can be numerically esti-
mated and may prove to be a useful quantity in itself.

Proposition 2 (Jensen Prior). For a proper prior p(θ) and
a fixed dataset D, we can define a prior pJ(θ) such that
when using this modified prior in the Jensen posterior we
have

pJ(θ | D) = p(θ | D). (43)

In particular, this implies that any Jensen posterior can be
interpreted as the posterior distribution of the same model
under a different prior.

Proof. We have the true posterior

p(θ | D) = p(θ)

n∏
i=1

∫
p(yi |xi, zi,θ) p(zi) dzi, (44)

and the Jensen posterior as

pJ(θ | D) := p(θ)

n∏
i=1

exp
(
Ezi∼p(zi) [log p(yi |xi, zi,θ)]

)
,

(45)
respectively. If we define the Jensen prior,

pJ(θ) :∝ w(θ) p(θ), (46)

where we set the weighting function w(θ) :=
∏n
i=1 wi(θ),

with the individual weighting functions defined as

wi(θ) :=

∫
p(yi |xi, zi,θ) p(zi) dzi

exp
(
Ezi∼p(zi)[log p(yi |xi, zi,θ)]

) . (47)

Due to Jensen’s inequality we have wi(θ) ≤ 1 and hence
w(θ) ≤ 1 and thus pJ(θ) is normalizable. Using pJ(θ) as

prior in (45) we obtain

pJ(θ | D) (48)

∝ pJ(θ)

n∏
i=1

exp
(
Ezi∼p(zi) [log p(yi |xi, zi,θ)]

)
, (49)

= p(θ)

(
n∏
i=1

wi(θ)

)
(50)

n∏
i=1

exp
(
Ezi∼p(zi) [log p(yi |xi, zi,θ)]

)
, (51)

= p(θ)

n∏
i=1

∫
p(yi |xi, zi,θ) p(zi) dzi (52)

∝ p(θ | D). (53)

This constructively demonstrates the result (43).

We now interpret current deep learning methods as optimiz-
ing the Jensen posterior.

K.3. Deep Learning Techniques Optimize Jensen
Posteriors

Dropout. In dropout we sample random binary masks
zi ∼ p(zi) and multiply network activations with such
masks (Srivastava et al., 2014). Specializing the above
latent variable model to dropout gives an interpretation of
doing maximum aposteriori (MAP) estimation on the Jensen
posterior pJ(θ |X,Y).

The connection between dropout and applying Jensen’s
bound has been discovered before by several groups (Noh
et al., 2017), (Nalisnick et al., 2019), (Inoue, 2019), and
contrasts sharply with the variational inference interpreta-
tion of dropout, (Kingma et al., 2015; Gal & Ghahramani,

Appendix for “How Good is the Bayes Posterior in Deep Neural Networks Really?”

co
nv

/b
ia

s

co
nv

/k
er

ne
l

de
ns

e/
bi

as

de
ns

e/
ke

rn
el

em
be

dd
in

g/
em

be
dd

in
gs

lst
m

/b
ia

s

lst
m

/k
er

ne
l

lst
m

/re
cu

rre
nt

_k
er

ne
l0.0

2.5

5.0

Ki
ne

tic
 te

m
pe

ra
tu

re
 T

K 24 of 24 in 99% sampling interval

(a) Preconditioning, cosine stepping

co
nv

/b
ia

s

co
nv

/k
er

ne
l

de
ns

e/
bi

as

de
ns

e/
ke

rn
el

em
be

dd
in

g/
em

be
dd

in
gs

lst
m

/b
ia

s

lst
m

/k
er

ne
l

lst
m

/re
cu

rre
nt

_k
er

ne
l0.0

2.5

5.0

Ki
ne

tic
 te

m
pe

ra
tu

re
 T

K

19.18
21.32

20 of 24 in 99% sampling interval

(b) No preconditioning, cosine stepping

co
nv

/b
ia

s

co
nv

/k
er

ne
l

de
ns

e/
bi

as

de
ns

e/
ke

rn
el

em
be

dd
in

g/
em

be
dd

in
gs

lst
m

/b
ia

s

lst
m

/k
er

ne
l

lst
m

/re
cu

rre
nt

_k
er

ne
l0.0

2.5

5.0

Ki
ne

tic
 te

m
pe

ra
tu

re
 T

K 13 of 24 in 99% sampling interval

(c) Preconditioning, no cosine stepping

co
nv

/b
ia

s

co
nv

/k
er

ne
l

de
ns

e/
bi

as

de
ns

e/
ke

rn
el

em
be

dd
in

g/
em

be
dd

in
gs

lst
m

/b
ia

s

lst
m

/k
er

ne
l

lst
m

/re
cu

rre
nt

_k
er

ne
l0.0

2.5

5.0

Ki
ne

tic
 te

m
pe

ra
tu

re
 T

K

1692.03
121.85
16.33

211.04
12.89

7.05
7 of 24 in 99% sampling interval

(d) No preconditioning, no cosine stepping

Figure 12. CNN-LSTM IMDB Langevin per-variable kinetic temperature estimates at temperature T = 1 for four different simulation
settings: with and without preconditioning, with and without cosine time stepping. The only accurate simulation is obtained with both
preconditioning and cosine time stepping.

Appendix for “How Good is the Bayes Posterior in Deep Neural Networks Really?”

2016). Recent variants of dropout such as noise-in (Dieng
et al., 2018) can also be interpreted in the same way.

The Jensen prior interpretation justifies the use of standard
dropout in Bayesian neural networks: the inferred posterior
is the Jensen posterior which is also a Bayesian posterior
under the Jensen prior.

Data Augmentation. Data augmentation is a simple and
intuitive way to insert high-level prior knowledge into neural
networks: by targeted augmentation of the available training
data we can encode invariances with respect to natural trans-
formation or noise, leading to better generalization, (Perez
& Wang, 2017).

Data augmentation is also an instance of the above latent
variable model, where zi now corresponds to randomly sam-
pled parameters of an augmentation, for example, whether
to flip an image along the vertical axis or not.

Interestingly, the above model suggests that to obtain better
predictive performance at test time, the posterior predictive
should be obtained by averaging the individual posterior
predictive distributions over multiple latent variable real-
izations. Indeed this is what early work on convolutional
networks did, (He et al., 2015; 2016), improving predictive
performance significantly.

The Jensen prior interpretation again justifies the use of
approximate Bayesian inference techniques targeting the
Jensen posterior. In particular, our theory suggests that
the dataset size n should not be adjusted to account for
augmentation.

Batch Normalization. As a practical technique batch nor-
malization (Ioffe & Szegedy, 2015) accelerates and stabi-
lizes learning in deep neural networks. The model of Fig-
ure 13 cannot directly serve to interpret batch normalization
due to the dependence of batch normalization statistics on
the batch. We therefore need to extend the model to incorpo-
rate a random choice of batches yielding continuous random
batch normalization statistics as proposed earlier (Atanov
et al., 2018; Shekhovtsov & Flach, 2018).

yi

θ x′i zi

xi

i = 1, . . . , n

Figure 14. Augmented
model for batch normal-
ization.

Formally such variation of
batch normalization corre-
sponds to the model shown in
Figure 14, where (xi)i → θ
signifies the additional random-
ness in p(θ|X) due to random
batches, and (θ, xi, zi) → x′i
are the resulting random
outputs of the network, where
zi is a per-instance randomness
source (Atanov et al., 2018).

With the above modifications

all derivations in Section K.2
hold and batch normalization
has a Jensen posterior. In par-
ticular, the Jensen interpretation also suggests to perform
batch normalization at test-time, averaging over multiple
different batches composed of training set samples.

K.4. Dirty Likelihood Experiment

The dirty likelihood hypothesis is plausible for the ResNet-
20 experiments which use data augmentation and batch
normalization, however, our CNN-LSTM model does have
a clean likelihood function already.

To gain further confidence that this hypothesis cannot ex-
plain cold posterior we train a ResNet-20 without batch
normalization or data augmentation.

Clean Likelihood ResNet Experiment: we disable data
augmentation and replace batch normalization with filter
response normalization, (Singh & Krishnan, 2019). Without
data augmentation and without batch normalization we now
have a clean likelihood function and SG-MCMC targets a
true underlying Bayes posterior.

Figure 15 on page 14 shows the predictive test performance
as a function of temperature. We clearly see that for small
temperatures T � 1 the removal of data augmentation
and batch normalization leads to a higher standard error
over the three runs, so that indeed data augmentation and
batch normalization had a stabilizing effect on training and
mitigated overfitting. However, for test accuracy the best
performance by the SG-MCMC ensemble model is still
achieved for T < 1. In particular, for test accuracy the
best accuracy of 87.8± 0.16% is achieved at T = 0.0193,
comparing to a worse predictive accuracy of 87.1±0.13% at
temperature T = 1. For test cross entropy the performance
achieved at T = 0.0193 with 0.393± 0.015 is comparable
to 0.3918± 0.0021 achieved at T = 1.

The clean likelihood ResNet experiment is slightly inconclu-
sive as there is now a less marked improvement when going
to lower temperatures. However, our CNN-LSTM IMDB
model already had a clean likelihood function. Therefore,
while dirty likelihoods may play a role in shaping the poste-
rior that SG-MCMC methods simulate from they likely do
not account for the cold posterior effect.

L. Prior Predictive Analysis for Different
Prior Scales

Our experiments in the main paper (Section 5.2) clearly
demonstrate that the prior p(θ) = N (0, I) is bad in that
it places prior mass on the same highly concentrated class
probabilities for all training instances.

What other priors could we use? The literature contains sig-

Appendix for “How Good is the Bayes Posterior in Deep Neural Networks Really?”

10 4 10 3 10 2 10 1 100
0.6

0.7

0.8

0.9
Te

st
 a

cc
ur

ac
y

SG-MCMC
Average ensemble member accuracy

10 4 10 3 10 2 10 1 100

Temperature T

0.5

1.0

1.5

2.0

Te
st

 c
ro

ss
 e

nt
ro

py

Figure 15. ResNet-20 with filter response normalization (FRN)
instead of batch normalization and without any use of data aug-
mentation.

nificant prior work on this question. Neal (1995) examined
priors for shallow neural networks and identified scaling
laws and correspondence to Gaussian process kernels. Re-
cently a number of works added to Neal’s analysis by extend-
ing the results to deep and wide neural networks (Lee et al.,
2018; de G. Matthews et al., 2018; Yang, 2019), convolu-
tional networks (Garriga-Alonso et al., 2019), and Bayesian
neural networks (Novak et al., 2019).

A related line of work explores random functions defined by
the initialization process of a deep neural network. Glorot
& Bengio (2010) and He et al. (2015) developed efficient
random initialization schemes for deep neural networks
and a more formal analysis of information flow in random
functions defined by neural networks is given by Schoenholz
et al. (2017) and Hayou et al. (2018). All these works derive
variance-scaling laws for independent Gaussian priors. The
precise scaling law depends on the network layer and the
activation function being used. For the same architecture
and activation the scaling laws generally agree with those
obtained from the Gaussian process perspective. Figure 12
shows that the cold posterior effect is present regardless
of the scaling of the variance of the Normal prior. In the
following we investigate certain scaling laws of the prior
more detailed.

L.1. He-Scaled Normal Prior, N (0, I) for Biases

To remain as close as possible to our existing setup we
investigate a He-scaling prior, equation (14) in (He et al.,
2015).

p(θj) = N
(

0,
2

bj

)
, (54)

where bj is the fan-in of the j’th layer.5

The scaling law derived by He et al. (2015) does not cover
the bias terms in a model. This is due to the work consid-
ering only initialization—(He et al., 2015) initialized all
biases to zero—whereas we would like to have proper priors
for all model variables. We therefore choose the original
N (0, I) prior for all bias variables in our model.

He-scaled Prior Predictive Experiment: For our ResNet-
20 setup on CIFAR-10 we use our He-scaled-Normal prior
to once again carry out the prior predictive experiment that
was originally done in Section 5.2, Figures 7 and 8 of the
main paper. Figure 16 show the prior predictive results for
the new prior. The basic conclusion remains unchanged:
despite scaling the convolution weights and dense layer
weights by the He-scaling law in the prior the prior pre-
dictive distributions remain highly concentrated around the
same distribution for all training instances.

Why do functions under this prior remain concentrated?
Perhaps it is due to the looseN (0, I) prior for the bias terms
such that any concentration in early layers is amplified in
later layers? We investigate this further in Section L.2.

He-scaled Prior ResNet-20 CIFAR-10 Experiment: We
also perform the original cold posterior experiment from the
main paper with the He-scaling Normal prior. We show the
temperature-dependence curves for test accuracy and test
cross-entropy in Figure 17. The overall performance drops
compared to the N (0, I) prior, but the cold posterior effect
clearly remains. With this result and the result from the
prior predictive study we can conclude that a simple Normal
scaling correction is not enough to yield a sensible prior.

L.2. He-Scaled Normal Prior, N (0, εI) for Biases

In this section we experiment with He-scaling and a very
small scale for the bias prior. There are two motivations
for such experimentation: first, He-scaling was originally
proposed by He et al. (2015) for initializing deep convo-
lutional neural networks and in their initialization all bias
terms were initialized to zero. Second, bias terms influence
a large number of downstream activations and getting the
scale wrong for our bias priors may have the large concen-
tration effect that we observe in the previous prior predictive
experiments.

We therefore propose to use a He-scaling Normal prior for
all Conv2D and Dense layer weights and to use aN (0, εI)
prior for all bias terms. Here we use ε = σ2 with σ = 10−6,
essentially sampling all bias terms close to zero as in the
original initialization due to (He et al., 2015).

5For a Dense layer the fan-in is the number of input dimen-
sions, for a Conv2D layer with a kernel of size k-by-k and d input
channels the fan-in is bj = k2d.

Appendix for “How Good is the Bayes Posterior in Deep Neural Networks Really?”

1 2 3 4 5 6 7 8 9 100.0

0.5

1.0

Cl
as

s p
ro

ba
bi

lit
y Prior parameter sample 1

Train set class distribution

1 2 3 4 5 6 7 8 9 100.0

0.5

1.0

Cl
as

s p
ro

ba
bi

lit
y Prior parameter sample 2

Train set class distribution

(a) Typical predictive distributions for 10 classes under the prior, averaged over the entire
training set, Ex∼p(x)[p(y|x,θ(i))]. Each plot is for one sample θ(i) ∼ p(θ). Given a
sample θ(i) the average training data class distribution is still highly concentrated around
the same classes for all x.

1 2 3 4 5 6 7 8 9 100.0

0.5

1.0

Cl
as

s p
ro

ba
bi

lit
y

Prior predictive average (S=100)

(b) Prior predictive
Ex∼p(x)[Eθ∼p(θ)[p(y|x,θ)]] over 10
classes for a Kaiming-scaling prior, esti-
mated using S = 100 samples θ(i) and all
training images.

Figure 16. ResNet-20/CIFAR-10 prior predictive study for a He-scaled Normal prior for Conv2D and Dense layers and aN (0, I) prior
for all bias terms. This prior concentrates prior mass on functions which output the same concentrated label distribution for all training
instances. It is therefore a bad prior.

10 4 10 3 10 2 10 1 100
0.88

0.90

0.92

0.94

Te
st

 A
cc

ur
ac

y

SG-MCMC

10 4 10 3 10 2 10 1 100

Temperature T

0.2

0.3

0.4

0.5

Te
st

 C
ro

ss
 E

nt
ro

py SG-MCMC

Figure 17. ResNet-20 on CIFAR-10 with He-scaling Normal prior
(He-scaled Normal for Conv2D and Dense layers, andN (0, I)
for all bias terms). The cold posterior effect remains: the poor
predictive performance of the Bayes posterior at T = 1 holds for
both accuracy and cross-entropy.

He-scaled Prior, N (0, εI) Bias Prior Experiment: We
draw ResNet-20 models from the prior and evaluate the
predicted class distributions on the entire CIFAR-10
training set. Figure 18a shows two prior draws and
the resulting class distributions marginalized over the
entire training set. Figure 18b shows a marginal prior
predictive, marginalized over S = 100 prior draws and
the entire training distribution of 50,000 images. The
resulting marginal prior predictive approaches the uniform
distribution. However, the He-scaled prior with N (0, εI)
for bias terms remains a bad prior: random draws place
prior mass on the same concentrated class distribution for
all training instances.

M. Tempering the Observation Model?
In (Wilson & Izmailov, 2020), Equation (4) a proposal is
made to use a different likelihood function of the form

pT (y|x,θ) :∝ p(y|x,θ)1/T . (55)

It is claimed that with this adjusted observation model the
cold posterior is simply the ordinary Bayes posterior of the
modified model. Indeed, if we are to plug the right hand
side of (55) directly into our posterior energy function (2)
we obtain the cold posterior energy function,

UT (θ) := −
n∑
i=1

1

T
log p(yi|xi,θ)− log p(θ). (56)

The mistake in this derivation is to ignore that renormaliza-
tion of pT (y|x,θ) must be carried out because the normal-
izing constant is not invariant of θ. In particular, this is in
contrast to typical applications of Bayes rule for posteriors,
where we can indeed write p(θ|D) ∝ p(D|θ)p(θ) without
worries, as here the normalizing constant does not depend
on θ. One consequence of this mistake is that UT (θ) is not
necessarily the energy function of a Bayes posterior.

Instead, for the tempered observation model proposed
by (Wilson & Izmailov, 2020) the correctly normalized
observation likelihood is

pT (y|x,θ) =
p(y|x,θ)1/T∫
p(y|x,θ)1/T dy

. (57)

Using this normalized observation model, the correct Bayes
posterior energy corresponding to pT (y|x,θ) is

ŨT (θ) := −
n∑
i=1

1

T
log p(yi|xi,θ)− log p(θ)

+

n∑
i=1

log

∫
p(y|xi,θ)1/T dy. (58)

Therefore, when the observation model is transformed as
in (55) and as suggested by (Wilson & Izmailov, 2020),
then in order to obtain a normalized observation model we
must include the correction term (58) and this produces
a modified energy function, ŨT (θ), that differs from the
actual cold posterior energy function UT (θ).

Appendix for “How Good is the Bayes Posterior in Deep Neural Networks Really?”

1 2 3 4 5 6 7 8 9 100.0

0.5

1.0

Cl
as

s p
ro

ba
bi

lit
y Prior parameter sample 1

Train set class distribution

1 2 3 4 5 6 7 8 9 100.0

0.5

1.0

Cl
as

s p
ro

ba
bi

lit
y Prior parameter sample 2

Train set class distribution

(a) Typical predictive distributions for 10 classes under the prior, averaged over the entire
training set, Ex∼p(x)[p(y|x,θ(i))]. Each plot is for one sample θ(i) ∼ p(θ). Given a
sample θ(i) the average training data class distribution is still highly concentrated around
the same classes for all x despite using a smallN (0, εI) prior for biases.

1 2 3 4 5 6 7 8 9 100.0

0.5

1.0

Cl
as

s p
ro

ba
bi

lit
y

Prior predictive average (S=100)

(b) Prior predictive
Ex∼p(x)[Eθ∼p(θ)[p(y|x,θ)]] over 10
classes for a Kaiming-scaling prior with a
N (0, εI) prior for bias terms. We estimate
the marginal distribution using S = 100

samples θ(i) and all training images.

Figure 18. ResNet-20/CIFAR-10 prior predictive study for a He-scaled Normal prior for Conv2D and Dense layers and aN (0, εI) prior
for all bias terms. This prior still concentrates prior mass on functions which output the same concentrated label distribution for all
training instances. It is therefore a bad prior.

Is there a way to “fix” this mistake? I.e. can one con-
struct an observation model such that the resulting Bayes
posterior corresponds to a tempered version of the Bayes
posterior of the original observation model? For classifi-
cation we found a way: we assign probability to a pseudo
event “∅” which cannot occur. To see this, assume a clas-
sification model p(y|x) where y ∈ {1, 2, . . . ,K}. Clearly∑K
k=1 p(y = k|x) = 1. Given a temperature T ≤ 1 we

define
p̃(y = k|x) := p(y = k|x)1/T . (59)

Clearly for 0 < T ≤ 1 we have that f(x) = x1/T is a
monotonic function in x ∈ [0, 1] and f(x) = x1/T ≤ x, and
therefore

∑
k p̃(y = k|x) ≤ 1. We absorb the remaining

probability mass into a pseudo event “∅”,

p̃(y = ∅|x) := 1−
K∑
k=1

p̃(y = k|x), (60)

such that the resulting distribution p̃ overK+1 basic events
sums to one, ∑

k∈{1,2,...,K,∅}

p̃(y = k|x) = 1. (61)

Now observe that for any event in {1, 2, . . . ,K} that actu-
ally can occur we have

log p̃(y = k|x) =
1

T
log p(y = k|x), (62)

that is, we have achieved the effect of temperature scal-
ing when using p̃ as observation model. While formally
possible, can we make sense of this transformation and
introduction of a pseudo event?

To us it seems entirely non-Bayesian to artificially introduce
events into a model while knowing with perfect certainty
that these events cannot happen and then allow the model to
assign probability mass to those events. It is non-Bayesian
because our knowledge with respect to the new event is
perfect: it cannot occur. Therefore a model should respect
this knowledge of the world.

N. Details: Generation of a Synthetic Dataset
Based on an MLP Drawn From its Prior
Distribution

In this section, we describe how we generate a synthetic
dataset based on a multi-layer perceptron (MLP) drawn
from its prior distribution, as used in Section 4.2 of the main
paper.

We generate synthetic data by (i) drawing a MLP from its
prior distribution, i.e., mlpθ with θ ∼ p(θ), (ii) sampling in-
put data point x’s ∈ R5 from a standard normal distribution
and (iii) sampling label y’s ∈ {1, 2, 3} from the resulting
logits mlpθ(x). We take mlpθ to be of depth 2, with 10
units and relu activation functions. We generate n = 100
points for inference and 10,000 for evaluations.

The choice of p(θ) requires some care. On the one hand, a
naive choice of normal priors with unit standard deviation
leads to a degenerated dataset that concentrates all its out-
puts on a single class. On the other hand, normal priors with
a smaller standard deviation6, e.g., 0.05, lead to a less spiky
label distribution but with little dependence on the input x’s.

As a result, we considered a He normal prior (He et al.,
2015) for the weights of mlpθ and a normal prior, with
standard deviation 0.05, for the bias terms. We similarly
adapted the choice of the priors for the MLPs used to learn
over the data generated in this way.

O. Details about Hamiltonian Monte Carlo
In this section, we describe practical considerations about
Hamiltonian Monte Carlo (HMC) and present further results
about its comparison with SG-MCMC (see Section 4.2).

HMC mainly exposes four hyperparameters that need to be
set (Neal et al., 2011):

• The number L of steps of the leapfrog integrator,

6Default value of tf.random_normal_initializer.

Appendix for “How Good is the Bayes Posterior in Deep Neural Networks Really?”

• The step size ε in the leapfrog integrator,
• The number b of steps of the burn-in phase,
• The number S of samples to generate.

O.1. Hyperparameter choices

In our experiments with HMC, we have set S = 2500,
generating a total of 25000 samples after the burn-in phase
and keeping one sample every ten samples.

For the burn-in phase, we investigated in preliminary ex-
periments the effect of varying the number of steps b ∈
{500, 1000, 5000}, noticing that our diagnostics (as later
described) started to stabilize for b = 1000, so that we de-
cided to use b = 5000 out of precaution (even though it may
not be the most efficient option).

We thereafter searched a good combination of leapfrog
steps and step size for L ∈ {5, 10, 100} and ε ∈
{0.001, 0.01, 0.1}. The results of the nine possible com-
binations are reported in Figure 20, after aggregating 5
different runs (i.e., from 5 different random initial condi-
tions). The influence of the step size in our experiments
was likely reduced by the fact that we used the dual averag-
ing step-size adaptation scheme from Hoffman & Gelman
(2014), as implemented in Tensorflow Probability (Dillon
et al., 2017).7

O.2. Convergence monitoring

We monitor convergence by first inspecting trace plots and
second by computing standard diagnostics, namely the effec-
tive sample size (ESS) (Brooks et al., 2011) and the potential
scale reduction (PSRF) (Gelman & Rubin, 1992).

Trace plots. In Figures 21-22-23, we detail the inspection
of the 5 different chains for the choice L = 100 and ε = 0.1
(which corresponds to the results of the sampler shown in
the main paper). As practical diagnostic tools, we consider
trace plots where we monitor the evolution of some statistics
with respect to the generated HMC samples (e.g., see Sec-
tion 24.4 in Murphy (2012), and references therein, for an
introduction in a machine learning context). We compute
trace plots for different depths of the MLP (in {1, 2, 3}) and
different8 temperatures, T ∈ {0.001, 0.0024, 0.014, 1.0}.

In addition to monitoring the evolution of the cross entropy
for S′ ∈ {1, 2, . . . , S} HMC samples (see Figure 21), we
also consider the following statistics:

• Mean of the predictive entropy: Let us denote by
Dheld-out the held-out set of pairs (x, y) and Eθ(x) the

7tfp.mcmc.DualAveragingStepSizeAdaptation.
8We limit ourselves to four temperatures to avoid clutter.

entropy of the softmax output at the input x

Eθ(x) = −
∑
c

p(y = c|x,θ) log p(y = c|x,θ),

together with its average over the held-out set

Eθ =
1

|Dheld-out|
∑

(x,y)∈Dheld-out

Eθ(x).

For S′ ∈ {1, 2, . . . , S} samples collected along the
trajectory of HMC, we report in Figure 22 the estimate

Ê =
1

S′

S′∑
s=1

Eθs
≈ Ē =

∫
Eθ · p(θ|D)dθ,

which we refer to as the mean of the predictive entropy.

• Standard deviation of the predictive entropy: We
also consider the monitoring of the second moment of
the predictive entropy. With the above notation, we
estimate

1

S′ − 1

S′∑
s=1

(Eθs − Ê)2 ≈
∫

(Eθ − Ē)2 · p(θ|D)dθ

and report its square root in Figure 23, which we refer
to as the standard deviation of the predictive entropy.

As a general observation, we can see on Figures 21-22-
23 that, overall, the 5 different chains tend to exhibit a
converging behavior for the three examined statistics, with
typically more dispersion as the depth and the temperature
increase (which is reflected by the ranges of the y-axis in
the plots of Figures 21-22-23 that get wider as T and the
depth become larger).

ESS and PSRF. The effective sample size (ESS) (Brooks
et al., 2011) measures how independent the samples are in
terms of the auto-correlations within the sequence at differ-
ent lags. The potential scale reduction factor (PSRF) (Gel-
man & Rubin, 1992) assesses the convergence of the chains
(to the same target distribution) by testing for equality of
means.

We computed ESS and PSRF for our HMC simulation
(with 100 leapfrog steps and a step size of 0.1, as re-
ported in the main paper). We used the TFP imple-
mentations tfp.mcmc.{effective_sample_size,
potential_scale_reduction}. Figure 19 (left,
middle) displays the ESS and PSRF with respect to the
different temperature levels, for the 3 MLP depths. Both
ESS and PSRF were averaged over the model parameters.

We observe that in the regime T in [0.05, 1], the diagnostics
indicate an approximate convergence (PSRF < 1.05 and ESS

Appendix for “How Good is the Bayes Posterior in Deep Neural Networks Really?”

in [1800, S], with S = 2500 total samples) for the 3 MLP
depths. On the other hand, in the regime T in [0.001, 0.05],
the diagnostics only continue to indicate an approximate
convergence for the depth 1. For depths 2 and 3, both
diagnostics substantially degrade, e.g., ESS down to ≈ 189
for depth 3.

O.3. KL divergence between predictive distributions

In Section 4.2, we compare side by side the cross-entropy of
SG-MCMC and HMC for the different temperature levels,
exhibiting a close agreement.

As an alternative visualization of this comparison, we com-
puted the (symmetrized) KL divergence between the SG-
MCMC and HMC predictive distributions (i.e., in our set-
ting, categorical distributions with 3 classes).

For SG-MCMC and HMC (instantiated with 100 leapfrog
steps and a step size of 0.1, as reported in the main pa-
per), Figure 19 (right) displays the (symmetrized) KL with
respect to the different temperature levels, for the 3 MLP
depths (averaged over the seeds). We observe that all KLs
are small (in the order of ≈ 10−5 for depth 1, and ≈ 10−3

for depths 2 and 3).

Appendix for “How Good is the Bayes Posterior in Deep Neural Networks Really?”

10 3 10 2 10 1 100

Temperature T

500

1000

1500

2000

2500

ES
S

10 3 10 2 10 1 100

Temperature T

0.9

1.0

1.1

1.2

1.3

1.4

1.5

PS
RF

MLP depth = 1
MLP depth = 2
MLP depth = 3

10 3 10 2 10 1 100

Temperature T

0.000

0.001

0.002

0.003

0.004

(s
ym

m
et

riz
ed

) K
L

MLP depth = 1
MLP depth = 2
MLP depth = 3

Figure 19. For HMC (instantiated with 100 leapfrog steps and a step size of 0.1, as reported in the main paper Section 4.2), we report
the effective sample size (left) and potential scale reduction factor (middle) with respect to the different temperature levels. On the
left plot, the black dash line corresponds to the S = 2500 samples and ESS=S indicates no correlation in the sequences. For PSRF,
approximate convergence is generally considered when PSRF < 1.2 (Gelman & Rubin, 1992). (right) KL divergence between the
predictive distributions of HMC and SG-MCMC.

10−3 10−2 10−1 100

Temperature T

1.07

1.08

1.09

1.10

1.11

HMC (leapfrog steps: 5, step size: 0.1)

MLP depth = 1
MLP depth = 2
MLP depth = 3

10−3 10−2 10−1 100

Temperature T

1.07

1.08

1.09

1.10

1.11

SG-MCMC

T
es

t c
ro

ss
 e

nt
ro

py

10−3 10−2 10−1 100

Temperature T

1.07

1.08

1.09

1.10

1.11

HMC (leapfrog steps: 5, step size: 0.01)

MLP depth = 1
MLP depth = 2
MLP depth = 3

10−3 10−2 10−1 100

Temperature T

1.07

1.08

1.09

1.10

1.11

SG-MCMC

T
es

t c
ro

ss
 e

nt
ro

py

10−3 10−2 10−1 100

Temperature T

1.07

1.08

1.09

1.10

1.11

HMC (leapfrog steps: 5, step size: 0.001)

MLP depth = 1
MLP depth = 2
MLP depth = 3

10−3 10−2 10−1 100

Temperature T

1.07

1.08

1.09

1.10

1.11

SG-MCMC

T
es

t c
ro

ss
 e

nt
ro

py

10−3 10−2 10−1 100

Temperature T

1.07

1.08

1.09

1.10

1.11

HMC (leapfrog steps: 10, step size: 0.1)

MLP depth = 1
MLP depth = 2
MLP depth = 3

10−3 10−2 10−1 100

Temperature T

1.07

1.08

1.09

1.10

1.11

SG-MCMC

T
es

t c
ro

ss
 e

nt
ro

py

10−3 10−2 10−1 100

Temperature T

1.07

1.08

1.09

1.10

1.11

HMC (leapfrog steps: 10, step size: 0.01)

MLP depth = 1
MLP depth = 2
MLP depth = 3

10−3 10−2 10−1 100

Temperature T

1.07

1.08

1.09

1.10

1.11

SG-MCMC

T
es

t c
ro

ss
 e

nt
ro

py

10−3 10−2 10−1 100

Temperature T

1.07

1.08

1.09

1.10

1.11

HMC (leapfrog steps: 10, step size: 0.001)

MLP depth = 1
MLP depth = 2
MLP depth = 3

10−3 10−2 10−1 100

Temperature T

1.07

1.08

1.09

1.10

1.11

SG-MCMC

T
es

t c
ro

ss
 e

nt
ro

py

10−3 10−2 10−1 100

Temperature T

1.07

1.08

1.09

1.10

1.11

HMC

MLP depth = 1
MLP depth = 2
MLP depth = 3

10−3 10−2 10−1 100

Temperature T

1.07

1.08

1.09

1.10

1.11

SG-MCMC

T
es

t c
ro

ss
 e

nt
ro

py

10−3 10−2 10−1 100

Temperature T

1.07

1.08

1.09

1.10

1.11

HMC (leapfrog steps: 100, step size: 0.01)

MLP depth = 1
MLP depth = 2
MLP depth = 3

10−3 10−2 10−1 100

Temperature T

1.07

1.08

1.09

1.10

1.11

SG-MCMC

T
es

t c
ro

ss
 e

nt
ro

py

10−3 10−2 10−1 100

Temperature T

1.07

1.08

1.09

1.10

1.11

HMC (leapfrog steps: 100, step size: 0.001)

MLP depth = 1
MLP depth = 2
MLP depth = 3

10−3 10−2 10−1 100

Temperature T

1.07

1.08

1.09

1.10

1.11

SG-MCMC

T
es

t c
ro

ss
 e

nt
ro

py

Figure 20. Comparisons between SG-MCMC and HMC instantiated with different choices of leapfrog steps L in {5, 10, 100} and step
sizes ε in {0.001, 0.01, 0.1}. The curves show the (held-out) cross entropy versus different temperature levels, aggregated over 5 different
runs, for MLPs of various depths (in {1, 2, 3} with fixed number of units 10 and relu activation functions). Details about the dataset used
can be found in the core paper. The setting L = 100 and ε = 0.1 corresponds to the results reported in the main paper.

Appendix for “How Good is the Bayes Posterior in Deep Neural Networks Really?”

0 1000 2000

1.083

1.084

1.085

C
ro

ss
 e

nt
ro

py

depth=1, T=0.001

seed 0
seed 1
seed 2
seed 3
seed 4

0 1000 2000

1.082

1.084

1.086

depth=1, T=0.0024

0 1000 2000

1.070

1.075

1.080

1.085

1.090

depth=1, T=0.014

0 1000 2000

1.05

1.10

1.15

1.20

depth=1, T=1.0

0 1000 2000

1.1075

1.1100

1.1125

1.1150

1.1175

C
ro

ss
 e

nt
ro

py

depth=2, T=0.001

0 1000 2000

1.108

1.110

1.112

depth=2, T=0.0024

0 1000 2000

1.105

1.110

1.115

1.120

depth=2, T=0.014

0 1000 2000

1.1

1.2

1.3

depth=2, T=1.0

0 1000 2000

1.110

1.112

1.114

1.116

1.118

C
ro

ss
 e

nt
ro

py

depth=3, T=0.001

0 1000 2000

1.110

1.112

1.114

1.116

1.118

depth=3, T=0.0024

0 1000 2000

1.100

1.105

1.110

1.115

1.120

depth=3, T=0.014

0 1000 2000
1.05

1.10

1.15

1.20

depth=3, T=1.0

Cross entropy vs. HMC samples (leapfrog_steps: 100, step_size: 0.1)

Figure 21. Trace plots of the cross entropy: We display the evolution of 5 different chains with respect to the S = 2500 HMC samples
collected after the burn-in phase, for various depths (rows) and temperatures (columns). Overall, the chains exhibit a converging behavior,
with typically more dispersion as the depth and the temperature increase (which is reflected by the ranges of the y-axis that get wider as T
and the depth increase).

0 1000 2000
0.9770

0.9775

0.9780

0.9785

0.9790

P
re

di
ct

iv
e

en
tr

op
y

depth=1, T=0.001

seed 0
seed 1
seed 2
seed 3
seed 4

0 1000 2000

0.977

0.978

0.979

0.980

depth=1, T=0.0024

0 1000 2000
0.965

0.970

0.975

0.980

0.985

depth=1, T=0.014

0 1000 2000

0.900

0.925

0.950

0.975

1.000

1.025
depth=1, T=1.0

0 1000 2000

0.960

0.961

0.962

0.963

0.964

P
re

di
ct

iv
e

en
tr

op
y

depth=2, T=0.001

0 1000 2000

0.960

0.961

0.962

0.963

0.964

0.965

depth=2, T=0.0024

0 1000 2000

0.955

0.960

0.965

0.970

depth=2, T=0.014

0 1000 2000

0.84

0.86

0.88

0.90

0.92

0.94
depth=2, T=1.0

0 1000 2000

0.962

0.964

0.966

0.968

P
re

di
ct

iv
e

en
tr

op
y

depth=3, T=0.001

0 1000 2000

0.964

0.965

0.966

0.967

depth=3, T=0.0024

0 1000 2000

0.965

0.970

0.975

0.980

depth=3, T=0.014

0 1000 2000

0.88

0.90

0.92

0.94

0.96

depth=3, T=1.0

Mean predictive entropy vs. HMC samples (leapfrog_steps: 100, step_size: 0.1)

Figure 22. Trace plots of the mean predictive entropy (see definition in Section O). We display the evolution of 5 different chains with
respect to the S = 2500 HMC samples collected after the burn-in phase, for various depths (rows) and temperatures (columns). See
further discussions in Figure 21.

Appendix for “How Good is the Bayes Posterior in Deep Neural Networks Really?”

0 1000 2000

0.0005

0.0010

0.0015

0.0020

P
re

di
ct

iv
e

en
tr

op
y

depth=1, T=0.001

seed 0
seed 1
seed 2
seed 3
seed 4

0 1000 2000
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

depth=1, T=0.0024

0 1000 2000
0.002

0.004

0.006

0.008

0.010

0.012
depth=1, T=0.014

0 1000 2000

0.01

0.02

0.03

0.04

0.05

depth=1, T=1.0

0 1000 2000
0.0000

0.0005

0.0010

0.0015

0.0020

P
re

di
ct

iv
e

en
tr

op
y

depth=2, T=0.001

0 1000 2000

0.001

0.002

0.003

0.004

depth=2, T=0.0024

0 1000 2000

0.002

0.004

0.006

0.008

depth=2, T=0.014

0 1000 2000

0.00

0.02

0.04

0.06

0.08

depth=2, T=1.0

0 1000 2000

0.0005

0.0010

0.0015

0.0020

P
re

di
ct

iv
e

en
tr

op
y

depth=3, T=0.001

0 1000 2000

0.001

0.002

0.003

depth=3, T=0.0024

0 1000 2000
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

depth=3, T=0.014

0 1000 2000
0.00

0.02

0.04

0.06

depth=3, T=1.0

Standard deviation predictive entropy vs. HMC samples (leapfrog_steps: 100, step_size: 0.1)

Figure 23. Trace plots of the standard deviation of the predictive entropy (see definition in Section O). We display the evolution of 5
different chains with respect to the S = 2500 HMC samples collected after the burn-in phase, for various depths (rows) and temperatures
(columns). See further discussions in Figure 21.

Appendix for “How Good is the Bayes Posterior in Deep Neural Networks Really?”

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
Tensorflow: A system for large-scale machine learning. In
12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pp. 265–283, 2016.

Atanov, A., Ashukha, A., Molchanov, D., Neklyudov, K.,
and Vetrov, D. Uncertainty estimation via stochastic batch
normalization. arXiv preprint arXiv:1802.04893, 2018.

Brier, G. W. Verification of forecasts expressed in terms of
probability. Monthly weather review, 78(1):1–3, 1950.

Brooks, S., Gelman, A., Jones, G., and Meng, X. Handbook
of Markov Chain Monte Carlo. Chapman & Hall/CRC
Handbooks of Modern Statistical Methods. CRC Press,
2011. ISBN 9781420079425. URL https://books.
google.de/books?id=qfRsAIKZ4rIC.

de G. Matthews, A. G., Hron, J., Rowland, M., Turner, R. E.,
and Ghahramani, Z. Gaussian process behaviour in wide
deep neural networks. In ICLR, 2018.

Dieng, A. B., Ranganath, R., Altosaar, J., and Blei, D. M.
Noisin: Unbiased regularization for recurrent neural net-
works. arXiv preprint arXiv:1805.01500, 2018.

Dillon, J. V., Langmore, I., Tran, D., Brevdo, E., Vasudevan,
S., Moore, D., Patton, B., Alemi, A., Hoffman, M., and
Saurous, R. A. Tensorflow distributions. arXiv preprint
arXiv:1711.10604, 2017.

Gal, Y. and Ghahramani, Z. Dropout as a Bayesian approx-
imation: Representing model uncertainty in deep learn-
ing. In international conference on machine learning, pp.
1050–1059, 2016.

Garriga-Alonso, A., Rasmussen, C. E., and Aitchison, L.
Deep convolutional networks as shallow gaussian pro-
cesses. In ICLR, 2019.

Gelman, A. and Rubin, D. B. Inference from iterative simu-
lation using multiple sequences. Statistical science, 7(4):
457–472, 1992.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249–256, 2010.

Häggström, O. and Rosenthal, J. On variance conditions
for markov chain clts. Electronic Communications in
Probability, 12:454–464, 2007.

Hayou, S., Doucet, A., and Rousseau, J. On the selection
of initialization and activation function for deep neural
networks. arXiv preprint arXiv:1805.08266, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE inter-
national conference on computer vision, pp. 1026–1034,
2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hoffman, M. D. and Gelman, A. The no-u-turn sampler:
adaptively setting path lengths in Hamiltonian Monte
Carlo. Journal of Machine Learning Research, 15(1):
1593–1623, 2014.

Inoue, H. Multi-sample dropout for accelerated training and
better generalization. arXiv preprint arXiv:1905.09788,
2019.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

Jones, G. L. et al. On the Markov chain central limit theorem.
Probability surveys, 1(299-320):5–1, 2004.

Kingma, D. P., Salimans, T., and Welling, M. Variational
dropout and the local reparameterization trick. In Ad-
vances in Neural Information Processing Systems, pp.
2575–2583, 2015.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. Technical report, Citeseer,
2009.

Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Penning-
ton, J., and Sohl-Dickstein, J. Deep neural networks as
gaussian processes. In ICLR, 2018.

Leimkuhler, B. and Matthews, C. Molecular Dynamics.
Springer, 2016.

MacKay, D. J. et al. Ensemble learning and evidence maxi-
mization. In Proc. Nips, volume 10, pp. 4083. Citeseer,
1995.

Murphy, K. P. Machine learning: a probabilistic perspective.
MIT press, 2012.

Naeini, M. P., Cooper, G., and Hauskrecht, M. Obtaining
well calibrated probabilities using bayesian binning. In
Twenty-Ninth AAAI Conference on Artificial Intelligence,
2015.

Nalisnick, E., Hernandez-Lobato, J. M., and Smyth, P.
Dropout as a structured shrinkage prior. In International
Conference on Machine Learning, pp. 4712–4722, 2019.

https://books.google.de/books?id=qfRsAIKZ4rIC
https://books.google.de/books?id=qfRsAIKZ4rIC

Appendix for “How Good is the Bayes Posterior in Deep Neural Networks Really?”

Neal, R. M. Bayesian learning for neural networks. PhD
thesis, University of Toronto, 1995.

Neal, R. M. et al. MCMC using Hamiltonian dynamics.
Handbook of Markov chain Monte Carlo, 2(11):2, 2011.

Noh, H., You, T., Mun, J., and Han, B. Regularizing deep
neural networks by noise: Its interpretation and opti-
mization. In Advances in Neural Information Processing
Systems, pp. 5109–5118, 2017.

Novak, R., Xiao, L., Bahri, Y., Lee, J., Yang, G., Hron, J.,
Abolafia, D. A., Pennington, J., and Sohl-Dickstein, J.
Bayesian deep convolutional networks with many chan-
nels are gaussian processes. In ICLR, 2019.

Nowozin, S. Debiasing evidence approximations: On
importance-weighted autoencoders and jackknife vari-
ational inference. In Sixth International Conference on
Learning Representations (ICLR 2018), 2018.

Perez, L. and Wang, J. The effectiveness of data augmen-
tation in image classification using deep learning. arXiv
preprint arXiv:1712.04621, 2017.

Schoenholz, S. S., Gilmer, J., Ganguli, S., and Sohl-
Dickstein, J. Deep information propagation. In ICLR,
2017.

Schucany, W., Gray, H., and Owen, D. On bias reduction in
estimation. Journal of the American Statistical Associa-
tion, 66(335):524–533, 1971.

Shekhovtsov, A. and Flach, B. Stochastic normalizations
as Bayesian learning. arXiv preprint arXiv:1811.00639,
2018.

Singh, S. and Krishnan, S. Filter response normalization
layer: Eliminating batch dependence in the training of
deep neural networks. arXiv preprint arXiv:1911.09737,
2019.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Wilson, A. G. and Izmailov, P. Bayesian deep learning and a
probabilistic perspective of generalization. arXiv preprint
arXiv:2002.08791, 2020.

Yaida, S. Fluctuation-dissipation relations for stochastic
gradient descent. arXiv preprint arXiv:1810.00004, 2018.

Yang, G. Scaling limits of wide neural networks with
weight sharing: Gaussian process behavior, gradient in-
dependence, and neural tangent kernel derivation. arXiv
preprint arXiv:1902.04760, 2019.

Zhang, R., Li, C., Zhang, J., Chen, C., and Wilson, A. G.
Cyclical stochastic gradient MCMC for Bayesian deep
learning. In International Conference on Learning Rep-
resentations (ICLR 2020), 2020.

